• Title/Summary/Keyword: Cerium

Search Result 242, Processing Time 0.024 seconds

Technical Evaluation of Corium Cooling at the Reactor Cavity

  • Yang, Soo-Hyung;Chang, Keun-Sun;Lee, Jae-Hun;Lee, Jong-In
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.777-782
    • /
    • 1998
  • To terminate the progression of the sever accident and mitigate the accident consequences, corium coaling has been suggested as one of most important design features considered in the swore accident mitigation. Till now, some kinds of cooling methodologies have been identified and, specially the corium cooling at the reactor cavity has been considered as one of the most promising cooling methodologies. Moreover, several design requirements related to the cerium cooling at the reactor cavity have been also suggested and applied to the design of the next generation reactor. In this study technical description are briefly described for the important issues related to the cerium cooling at the reactor cavity, i.e. cavity area, cavity flooding system, etc., and simple evaluation for those items have been performed considering present technical levels the experiment and analytical works..

  • PDF

High Oxygen Sensitivity of Nanocrystalline Ceria Prepared by a Thermochemical Process

  • Lee, Dong-Won;Yu, Ji-Hoon;Lim, Tae-Soo;Jang, Tae-Suk
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.416-417
    • /
    • 2006
  • Nanostructured ceria powder was synthesized by a thermochemical process and investigated its applicability for an oxygen gas sensor. An amorphous precursor powders prepared by spray drying a cerium-nitrate solution were transformed successfully into nanostructured ceria by heat-treatment in air atmosphere. The powders were a loose agglomerated structure with extremely fine $CeO_2$ particles about 15 nm in size, resulting in a very high specific surface area $(110\;m^2/g)$. The oxygen sensitivity and the response time $t_{90}$ measured at sintered sample at $1000^{\circ}C$ was about -0.25 and very short, i.e., $3{\sim}5$ seconds, respectively.

  • PDF

Plasma Corrosion and Breakdown Voltage Behavior of Ce Ion Added Sulfuric Acid Anodizing According to Electrolyte Temperature (Ce ion이 첨가된 황산 아노다이징의 온도 변화에 따른 내플라즈마 특성)

  • So, Jongho;Yun, Ju-Young;Shin, Jae-Soo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.37-41
    • /
    • 2021
  • We report on the formation of anodic aluminum oxide (AAO) film using sulfuric acid containing cerium salt. When the temperature of the sulfuric acid containing cerium salt changes from 5 ℃ to 20 ℃, the current density and the thickness growth rate increase. The surface morphology of the AAO film change according to the temperature of the electrolytes. And that affected the breakdown voltage and the plasma etch rate. The breakdown voltage per unit thickness was the highest at 15 ℃, and the plasma etch rate was the lowest at 10 ℃ at 2.80 ㎛/h.

Fabrication and thermal conductivity of CeO2-Ce3Si2 composite

  • Ahn, Jungsu;Kim, Gyeonghun;Jung, Yunsong;Ahn, Sangjoon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.583-591
    • /
    • 2021
  • Various compositions of CeO2-Ce3Si2 (0, 10, 30, 50, and 100 wt%Ce3Si2) composites were fabricated using conventional sintering and spark plasma sintering. Lower relative density, enhanced interdiffusion of oxygen and silicon, and silicide agglomerations from the congruent melting of Ce3Si2 at 1390 ℃ were only observed from conventionally-sintered pellets. Thermal conductivity of spark plasma sintered CeO2-Ce3Si2 composites was calculated from the measured thermal diffusivity, specific heat, and density, which exhibited dense (>90 %TD) and homogeneous microstructure. The composite with 50 wt%Ce3Si2 exhibited 55% higher thermal conductivity than CeO2 at 500 ℃, and 81% higher at 1000 ℃.

Effect of Cerium Ammonium Nitrate and Alumina Abrasive Particles on Polishing Behavior in Ruthenium Chemical Mechanical Planarization (Ruthenium CMP에서 Cerium Ammonium Nitrate와 알루미나 연마 입자가 연마 거동에 미치는 영향)

  • Lee, Sang-Ho;Lee, Sung-Ho;Kang, Young-Jae;Kim, In-Kwon;Park, Jin-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.803-809
    • /
    • 2005
  • Cerium ammonium nitrate (CAN) and nitric acid was used an etchant and an additive for Ru etching and polishing. pH and Eh values of the CAN and nitric acid added chemical solution satisfied the Ru etching condition. The etch rate increased linearly as the concentration of CAN increased. Nitric acid added solution had the high etch rate. But micro roughness of etched surfaces was not changed before and after etching, The removal rate of Ru film was the highest in $1wt\%$ abrasive added slurry, and not increased despite the concentration of alumina abrasive increased to $5wt\%$. Even Ru film was polished by only CAN solution due to the friction. The highest removal rate of 120nm/min was obtained in 1 M nitric acid and $1wt\%$ alumina abrasive particles added slurry. The lowest micro roughness value was observed in this slurry after polishing. From the XPS analysis of etched Ru surface, oxide layer was founded on the etched Ru surface. Therefore, Ru was polished by chemical etching of CAN solution and oxide layer abrasion by abrasive particles. From the result of removal rate without abrasive particle, the etching of CAN solution is more dominant to the Ru CMP.

Photoluminescence of Y3(Al, Ga)5O12:Ce3+ Nanoparticles by a Reverse Micelle Process

  • Kim, Min Yeong;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.31-34
    • /
    • 2013
  • Trivalent cerium-ion-doped $Y_3(Al,\;Ga)_5O_{12}$ nanoparticle phosphor nanoparticles were synthesized using the reverse micelle process. The Ce doped $Y_3(Al,\;Ga)_5O_{12}$ particles were obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase and poly(oxyethylene) nonylphenyl ether (Igepal CO-520) as the non-ionic surfactant. The crystallinity, morphology, and thermal properties of the synthesized $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ powders were characterized by thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and transmission electron microscopy. The crystallinity, morphology, and chemical states of the ions were characterized; the photo-physical properties were studied by taking absorption, excitation, and emission spectra for various concentrations of cerium. The photo physical properties of the synthesized $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ powders were studied by taking the excitation and emission spectra for various concentrations of cerium. The average particle size of the synthesized YAG powders was below $1{\mu}m$. Excitation spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_{3.97}Ga_{1.03}O_{12}$ samples were 485 nm and 475 nm, respectively. The emission spectra of the $Y_3Al_5O_{12}$ and $Y_3Al_{3.97}Ga_{1.03}O_{12}$ were around 560 nm and 545 nm, respectively. $Y_3(Al,\;Ga)_5O_{12}:Ce^{3+}$ is a red-emitting phosphor; it has a high efficiency for operation under near UV excitation, and may be a promising candidate for photonic applications.