• Title/Summary/Keyword: Cerium

Search Result 242, Processing Time 0.023 seconds

Effect of Slurry Characteristics on Nanotopography Impact in Chemical Mechanical Polishing and Its Numerical Simulation (기계.화학적인 연마에서 슬러리의 특성에 따른 나노토포그래피의 영향과 numerical시뮬레이션)

  • Takeo Katoh;Kim, Min-Seok;Ungyu Paik;Park, Jea-Gun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.63-63
    • /
    • 2003
  • The nanotopography of silicon wafers has emerged as an important factor in the STI process since it affects the post-CMP thickness deviation (OTD) of dielectric films. Ceria slurry with surfactant is widely applied to STI-CMP as it offers high oxide-to-nitride removal selectivity. Aiming to control the nanotopography impact through ceria slurry characteristics, we examhed the effect of surfactant concentration and abrasive size on the nanotopography impact. The ceria slurries for this study were produced with cerium carbonate as the starting material. Four kinds of slurry with different size of abrasives were prepared through a mechanical treatment The averaged abrasive size for each slurry varied from 70 nm to 290 nm. An anionic organic surfactant was added with the concentration from 0 to 0.8 wt %. We prepared commercial 8 inch silicon wafers. Oxide Shu were deposited using the plasma-enhanced tetra-ethyl-ortho-silicate (PETEOS) method, The films on wafers were polished on a Strasbaugh 6EC. Film thickness before and after CMP was measured with a spectroscopic ellipsometer, ES4G (SOPRA). The nanotopogrphy height of the wafer was measured with an optical interferometer, NanoMapper (ADE Phase Shift)

  • PDF

A Study on the Etching Characteristics of $CeO_2$ Thin Films using inductively coulped $Cl_2/Ar$ Plasma (유도 결합 플라즈마($Cl_2/Ar$)를 이용한 $CeO_2$ 박막의 식각 특성 연구)

  • 오창석;김창일;권광호
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.29-32
    • /
    • 2000
  • Cerium oxide thin film has been proposed as a buffer layer between the ferroelectric film and the Si substrate in Metal-Ferroelectric-Insulator-Silicon (MFIS ) structures for ferroelectric random access memory (FRAM) applications. In this study, CeO$_2$thin films were etched with Cl$_2$/Ar gas combination in an inductively coupled plasma (ICP). The highest etch rate of CeO$_2$film is 230 $\AA$/min at Cl$_2$/(Cl$_2$+Ar) gas mixing ratio of 0.2. This result confirms that CeO$_2$thin film is dominantly etched by Ar ions bombardment and is assisted by chemical reaction of Cl radicals. The selectivity of CeO$_2$to YMnO$_3$was 1.83. As a XPS analysis, the surface of etched CeO$_2$thin films was existed in Ce-Cl bond by chemical reaction between Ce and Cl. The results of XPS analysis were confirmed by SIMS analysis. The existence of Ce-Cl bonding was proven at 176.15 (a.m.u.).

  • PDF

Development of High Performance WGS Catalyst for Fuel Processor Applications (연료 개질기용 고성능 수성가스 전환반응 촉매 개발)

  • Lee, Yoon-Ju;Ryu, Jong-Woo;Kim, Dae-Hyun;Choi, Eun-Hyung;Noh, Won-Suck;Lee, Sang-Deuk;Moon, Dong-Ju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.451-454
    • /
    • 2006
  • WGS reaction over Mo2C and ceria based catalysts was investigated to develop an alternative commercial Cu-Zn/Al2O3 catalyst for fuel processor and hydrogen station. The Mo2C catalysts were prepared by a temperature programmed method and the various metal supported cerium oxide catalysts were prepared by an Impregnation method. The catalysts were characterized by the N2 physisorption, Co chemisorption, XRD, TEM and TPR. It was found that Mo2C and 0.2wt% Pt-40wt%, Ni/CeO2 catalysts had higher activity and stability than the Cu-Zn/Al203 above $260^{\circ}C$. Moreover, CO conversion of more than 85% was observed at $280{\sim}300^{\circ}C$. But all catalysts were deactivated during the thermal cycling runs. The results suggest that these catalysts are an attractive candidate for the alternative Cu-Zn/Al2O3 catalyst for fuel processor and hydrogen station applications.

  • PDF

Investigation of natural solution effect in electrical conductivity of PANI-CeO2 nanocomposites

  • Shafiee, Mohammad Reza Mohammad;Sattari, Ahmad;Kargar, Mahboubeh;Ghashang, Majid
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • A green biosynthesis method is described for the preparation of Polyaniline (PANI)-cerium dioxide ($CeO_2$) nanocomposites in different media via in-situ oxidative polymerization procedure. The effect of various media including use of HCl, Lemon Juice, Beverage, White Vinegar, Verjuice and Apple vinegar extracts on the particles size, morphology as well as the conductivity of $PANI-CeO_2$ nanocomposites was investigated. The electron-withdrawing feature of $CeO_2$ increases doping level of PANI and enhances electron delocalization. These cause a significantly blue shift of C = C stretching band of quinoid from $1570cm^{-1}$ to $1585cm^{-1}$. The optical properties of the pure material and polymeric nanocomposites as well as their interfacial interaction in nanocomposite structures analyzed by UV-visible spectroscopy. The DC electrical conductivity (${\sigma}$) of as-prepared HCl doped PANI and a $PANI-CeO_2$ nanocomposite measured by a four-probe method at room temperature was studied.

The Effect of Dry Methods for Synthesized Yttria-doped Ceria by Co-precipitation (공침법으로 제조된 Yttira Doped Ceria분체의 건조방법에 따른 입자특성 고찰)

  • 변윤기;이상훈;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.798-803
    • /
    • 2003
  • In synthesis of nano powders, the hard agglomeration for the synthesized powders occurred during the drying processing. In order to avoid hard agglomeration in particles the freeze drying process was used in this experiment. e fabricated the Yttira-Doped Ceria(YDC) nano powder by co-precipitation. Starting materials used in experiments were the cerium(III) nitrate and yttrium(III) nitrate solution with 야-water, which two solutions were mixed and then the precipitated hydroxides were prepared for adding sodium hydroxide. The co-precipitated powders were dried by the thermal drying at 8$0^{\circ}C$ for 24 h and by freeze drying at -4$0^{\circ}C$, 30 mtorr for 72 h. The lattice parameter and crystallite size as a function of calcination temperature was characterized by XRD analysis. The lattice parameter of YDC was decreased with addition amount of yttrium and was estimated as 5.401683 $\AA$ at $700^{\circ}C$. Crystallite size were calculated by XRD-LB method, and morphologies were confirmed with the observation of TEM and SEM. The freeze dried YDC powders had medium diameter of 17 nm with more uniform size distribution than the thermal dried YDC posers, which were mainly ascribed to the difference of agglomerates formation during drying stage.

Luminescence of $Y_{2-x}Ce_xSiO_5$ Phosphor

  • Han-Soo Kim;Sahn Nahm;Myong-Ho Kim;Kyung-Su Suh;Jae-Dong Byun
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.245-248
    • /
    • 1997
  • Photoluminescence (PL) and cathodoluminescence (CL) characteristics of Ce-activated $Y_{2-x}Ce_xSiO_5$ have been investigated as functions of Ce concentration and firing condition. According to the X-ray, PL and CL results, $Y_2SiO_5$ is found to have two phases depending on the firing temperature. For the specimen fired above 127$0^{\circ}C$, the emission band peaked at 395nm with a shoulder at 424 nm under ultraviolet (u.v.) and cathode-ray (c.r.) excitation. However, for the specimen fired below 120$0^{\circ}C$ in air the peak was observed at 424 nm and it shifted to longer wavelength with reduction level. The reduced specimen for x=0.02 showed the brightest emission under u.v. excitation whereas under c.r. excitation the brightest emission was observed for the reduced specimen for x=0.06.

  • PDF

Improvement of dielectric and interface properties of Al/CeO$_2$/Si capacitor by using the metal seed layer and $N_2$ plasma treatment (금속씨앗층과 $N_2$ 플라즈마 처리를 통한 Al/CeO$_2$/Si 커패시터의 유전 및 계면특성 개선)

  • 임동건;곽동주;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.326-329
    • /
    • 2002
  • In this paper, we investigated a feasibility of cerium oxide(CeO$_2$) films as a buffer layer of MFIS(metal ferroelectric insulator semiconductor) type capacitor. CeO$_2$ layer were Prepared by two step process of a low temperature film growth and subsequent RTA (rapid thermal annealing) treatment. By app1ying an ultra thin Ce metal seed layer and N$_2$ Plasma treatment, dielectric and interface properties were improved. It means that unwanted SiO$_2$ layer generation was successfully suppressed at the interface between He buffer layer and Si substrate. The lowest lattice mismatch of CeO$_2$ film was as low as 1.76% and average surface roughness was less than 0.7 m. The Al/CeO$_2$/Si structure shows breakdown electric field of 1.2 MV/cm, dielectric constant of more than 15.1 and interface state densities as low as 1.84${\times}$10$\^$11/ cm$\^$-1/eV$\^$-1/. After N$_2$ plasma treatment, the leakage current was reduced with about 2-order.

  • PDF

Effects of Chemical and Abrasive Particles for the Removal Rate and Surface Microroughness in Ruthenium CMP (Ru CMP 공정에서의 화학액과 연마 입자 농도에 따른 연마율과 표면 특성)

  • Lee, Sang-Ho;Kang, Young-Jea;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1296-1299
    • /
    • 2004
  • MIM capacitor has been investigated for the next generation DRAM. Conventional poly-Si bottom electrode cannot satisfy the requirement of electrical properties and comparability to the high k materials. New bottom electrode material such as ruthenium has been suggested in the fabrication of MIM structure capacitor. However, the ruthenium has to be planarized due to the backend scalability. For the planarization CMP has been widely used in the manufacture of integrated circuit. In this research, ruthenium thin film was Polished by CMP with cerium ammonium nitrate (CAN)base slurry. HNO3 was added on the CAN solution as an additive. In the various concentration of chemical and alumina abrasive, ruthenium surface was etched and polished. After static etching and polishing, etching and removal rate was investigated. Also microroughness of surface was observed by AFM. The etching and removal rate depended on the concentration of CAN, and HNO3 accelerated the etching and polishing of ruthenium. The reasonable removal rate and microroughness of surface was achieved in the 1wt% alumina slurry.

  • PDF

Study on the Spheroidizing Mechanism of Graphite in Cast iron (part 1) (鑄鐵에 있어서의 黑鉛球狀化機構에 關한 硏究 (1))

  • Hyung Sup Choi;Ji Yung Chang
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.51-57
    • /
    • 1963
  • It is well known that the graphite flakes become spherulite, when a suitable amount of nodulizing element, such as cerium or magnesium, is added to the cast iron. The change of graphite from flake to nodular shape improves not only the tensile strength but the ductility as well. However, the mechanism of spheroidization of graphite in cast iron has not yet been clearly understood, and various theories proposed by a number of investigators were such that it may be due to the special nucleation effect, prevention of flake formation by the adsorption of magnesium vapour on the graphite surface or file surface free energy difference between plain graphite and magnesium-adsorbed graphite. Regardless of the speculations of spheroidizing mechanism of the graphite in the cast iron, the final phenomenon comes to the conclusion that it may be due to the lack of wettability between graphite and iron matrix. In order to collaborate this fact through an experimental method, the authors have constructed a vacuum arc furnace for the wettability measurement as its first step. Our study and experiments were then directed to the comparison of the wettability between iron and graphite on the two cases (namely, the one where magnesium was preliminarily coated on the graphite surface and the other not coated), by means of contact angle measurements. The result was such that a significant difference of the contact angles has been shown between the above two cases. indicating the spheroidization of graphite which might have resulted from the lack of wettability between magnesium-adsorbed graphite and iron matrix.

  • PDF

Sensitivity Studies on Thermal Margin of Reactor Vessel Lower Head During a Core Melt Accident

  • Kim, Chan-Soo;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.379-394
    • /
    • 2000
  • As an in-vessel retention (IVR) design concept in coping with a severe accident in the nuclear power plant during which time a considerable amount of core material may melt, external cooling of the reactor vessel has been suggested to protect the lower head from overheating due to relocated material from the core. The efficiency of the ex-vessel management may be estimated by the thermal margin defined as the ratio of the critical heat flux (CHF)to the actual heat flux from the reactor vessel. Principal factors affecting the thermal margin calculation are the amount of heat to be transferred downward from the molten pool, variation of heat flux with the angular position, and the amount of removable heat by external cooling In this paper a thorough literature survey is made and relevant models and correlations are critically reviewed and applied in terms of their capabilities and uncertainties in estimating the thermal margin to potential failure of the vessel on account of the CHF Results of the thermal margin calculation are statistically treated and the associated uncertainties are quantitatively evaluated to shed light on the issues requiring further attention and study in the near term. Our results indicated a higher thermal margin at the bottom than at the top of the vessel accounting for the natural convection within the hemispherical molten debris pool in the lower plenum. The information obtained from this study will serve as the backbone in identifying the maximum heat removal capability and limitations of the IVR technology called the Cerium Attack Syndrome Immunization Structures (COASISO) being developed for next generation reactors.

  • PDF