• 제목/요약/키워드: Cerebral nervous system

검색결과 147건 처리시간 0.033초

뇌 손상 환자(Cerebral palsy)의 Head up Tilt 상태에서의 심박변동과 자율 신경 활동 평가 (Assessment of autonomic function in Cerebral palsy patients during graded head-up tilt)

  • 최종주;조성래;이정환;이명호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2693-2695
    • /
    • 2002
  • In this paper, the power spectral analysis of heart rate variability(HRV) was performed to evaluate effects of orthostatic stress with head-up tilt on autonomic nervous system(ANS) for 20 healthy male subjects(age : 245 yr.) and a new method was proposed to assess the autonomic balance. The ECG signals wore recorded for 3 minutes in both the supine and 70 head-up tilt positions, and then the HRV signals underwent power spectrum analysis at each position. The results of this study suggest that cardiac autonomic functions, such as sympathetic tone in autonomic balance with the increment of sympathetic tone and the decrement of parasympathetic tone which occur during head-up tilt position, arc not sufficient to overcome tile orthostatic stress arising in Cerebral Palsy.

  • PDF

Spontaneous Conversion of Atrial Fibrillation to Normal Sinus Rhythm Following Recurrent Cerebral Infarctions

  • Oh, Kyungmi;Choi, Jeong-Yoon;Kim, Byung-Jo
    • Journal of Korean Neurosurgical Society
    • /
    • 제53권6호
    • /
    • pp.368-370
    • /
    • 2013
  • Post-stroke atrial fibrillation has been frequently reported especially in the patients with right insular infarct as an evidence of cerebrogenic mechanism affecting on cardiac rhythm. However, conversion to normal sinus rhythm after stroke in patients who had atrial fibrillation has not been reported. A 88-year-old men who had untreated atrial fibrillation was admitted to hospital due to left middle cerebral artery territory infarction. During admission, second ischemic attack occurred in right middle cerebral artery territory. At that time, his atrial fibrillation converted spontaneously to normal sinus rhythm. Restored sinus rhythm sustained until he died due to sepsis. This case is evidence supporting a theory that brain is associated with control of cardiac rhythm. If no risk factor is revealed by intensive investigation in patients with acute cerebral infarctions that cardioembolism is strongly suspected as a cause, physicians should concern transformation of atrial fibrillation to normal sinus rhythm after stroke.

A rare case of childhood-onset systemic lupus erythematosus associated end-stage renal disease with cerebral abscess and hemorrhage

  • Jee Hyun Kim;Jae Il Shin; Ji Hong Kim;Keum Hwa Lee
    • Childhood Kidney Diseases
    • /
    • 제28권1호
    • /
    • pp.44-50
    • /
    • 2024
  • Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease that affects multiple organs. More than half of the patients with SLE have kidney involvement, and up to 10% of patients with lupus nephritis develop end-stage renal disease (ESRD). Central nervous system (CNS) involvement in SLE occurs in 21% to 95% of patients. Severe neurological manifestations such as seizures, cerebrovascular disease, meningitis, and cerebrovascular accidents can develop in childhood-onset SLE, but cerebral infections, such as brain abscess and hemorrhage, are seldom reported in lupus nephritis, even in adults. Here, we report a rare case of childhood-onset SLE with ESRD, cerebral abscess, and hemorrhage. A 9-year-old girl diagnosed with lupus nephritis was administered high-dose steroids and immunosuppressant therapy to treat acute kidney injury (AKI) and massive proteinuria. The AKI deteriorated, and after 3 months, she developed ESRD. She received hemodialysis three times a week along with daily peritoneal dialysis to control edema. She developed seizures, and imaging showed a brain abscess. This was complicated by spontaneous cerebral hemorrhage, and she became unstable. She died shortly after the hemorrhage was discovered. In conclusion, CNS complications should always be considered in clinical practice because they increase mortality, especially in those with risk factors for infection.

Clinical Outcome of Nonfistulous Cerebral Varices: the Analysis of 39 Lesions

  • Kim, Hye Seon;Park, Seong-Cheol;Ha, Eun Jin;Cho, Wong-Sang;Kim, Seung-Ki;Kim, Jeong Eun
    • Journal of Korean Neurosurgical Society
    • /
    • 제61권4호
    • /
    • pp.485-493
    • /
    • 2018
  • Objective : Cerebral varices (CVs) without an arteriovenous shunt, so called nonfistulous CVs, are very rare, and their etiology and natural course are not well understood. The aim of this study is to evaluate the clinical outcomes of nonfistulous CVs by the analysis of 39 cases. Methods : From 2000 to 2015, 22 patients with 39 nonfistulous CVs (${\geq}5mm$) were found by searching the medical and radiologic records of our institute. Clinical data and radiological data including numbers, sizes and locations of CVs and associated anomalies were retrospectively collected and analyzed. Previously reported cases in literature were reviewed as well. Results : The mean age of the patients was 21 years (range, 0-78 years). On average, $1.8{\pm}1.2CVs$ were found per patient. CVs were categorized as either fusiform or saccular depending on their shapes. Two patients had saccular type CVs, seventeen patients had fusiform types, and three patients had both fusiform and saccular CVs. Eight patients had associated compromise of the vein of Galen and the straight sinus. Four of those patients had sinus pericranii, as well. Five patients had CVs that were distal draining veins of large developmental venous anomalies. One patient had associated migration anomaly, and two patients had Sturge-Weber syndrome. Six patients with an isolated cerebral varix were observed. Of the 39 CVs in 22 patients, 20 lesions in 14 patients were followed up in outpatient clinics with imaging studies. The average follow-up duration was 6.6 years. During this period, no neurological events occurred, and all the lesions were managed conservatively. Conclusion : Nonfistulous CVs seemed to be asymptomatic in most cases and remained clinically silent. Hence, we suggest conservative management.

뇌경색에 의한 편측부전마비에서 자기운동유발전위의 변동 (Change of Magnetic Motor Evoked Potentials in Hemiparesis due to Cerebral Infarction)

  • 이주호;박영혁;김광수;유경무
    • Annals of Clinical Neurophysiology
    • /
    • 제1권2호
    • /
    • pp.99-105
    • /
    • 1999
  • Background and Objectives : The Motor evoked potentials (MEP) study may be useful in the evaluation of the degree of impairment in the motor nervous system and in the determination of the prognosis. The purpose of this study is to evaluate the status of central nervous system in acute and subacute state of cerebral ischemia by comparing the changes of MEP in the initial and follow-up study. Methods : Twenty patients with hemiparesis caused by ischemic stroke were recruited for this study. We tested MEP within 7 days and followed-up after 14 days after symptom onset. The cerebral motor cortex area, cervical area for upper extremity and lumbar area for lower extremity were stimulated by transmagnetic stimulator. The central motor conduction time(CMCT) was measured with the difference in MEP caused by stimulating the vertical area and spinal area. The CMCT of hemiparetic patients were classified into three groups-normal, delayed, and no evoked MEP groups. Results : The CMCT in hemiparetic side of acute ischemic stroke patients were singnificantly delayed (P < 0.05) compared with the control group. The CMCT of hemiparetic side in the follow-up study showed no sinificantly difference in comparison to the control group. The prognosis of motor improvement was better in the groups of delayed MEP than the groups of no evoked MEP. Conclusion : The CMCT of hemiparetic and contralateral sides were delayed in acute ischemic stroke, compared with control group and were returned to normal boundaries in subacute state. But in the most cases with no MEP response in the initial study, also showed no MEP response in the follow-up study. The recovery occurred in the subacute state in cases with mild hemiparesis, whereas recovery did not occur in the subacute stage in case with severe hemiparesis.

  • PDF

흰쥐에서 체감각유발장전위의 기록부위별 특성과 경로분석 (Characteristics and Pathways of the Somatosensory Evoked Field Potentials in the Rat)

  • 신현철;박용구;이배환;류재욱;조춘식;정상섭
    • Journal of Korean Neurosurgical Society
    • /
    • 제30권7호
    • /
    • pp.831-841
    • /
    • 2001
  • Objective : Somatosensory evoked potentials(SSEPs) have been used widely both experimentally and clinically to monitor the function of central nervous system and peripheral nervous system. Studies of SSEPs have reported the various recording techniques and patterns of SSEP. The previous SSEP studies used scalp recording electrodes, showed mean vector potentials which included relatively constant brainstem potentials(far-field potentials) and unstable thalamocortical pathway potentials(near-field potentials). Even in invasive SSEP recording methods, thalamocortical potentials were variable according to the kinds, depths, and distance of two electrodes. So they were regarded improper method for monitoring of upper level of brainstem. The present study was conducted to investigate the characteristics of somatosensory evoked field potentials(SSEFPs) of the cerebral cortex that evoked by hindlimb stimulation using ball electrode and the pathways of SSEFP by recording the potentials simultaneously in the cortex, VPL nucleus of thalamus, and nucleus gracilis. Methods : In the first experiment, a specially designed recording electrode was inserted into the cerebral cortex perpendicular to the cortical surface in order to recording the constant cortical field potentials and SSEFPs mapped from different areas of somatosensory cortex were analyzed. In the second experiment, SSEPs were recorded in the ipsilateral nucleus gracilis, the contralateral ventroposterolateral thalamic nucleus(VPL), and the cerebral cortex along the conduction pathway of somatosensory information. Results : In the first experiment, we could constantly obtain the SSEFPs in cerebral cortex following the transcutaneous electrical stimulation of the hind limb, and it revealed that the first large positive and following negative waves were largest at the 2mm posterior and 2mm lateral to the bregma in the contralateral somatosensory cortex. The second experiment showed that the SSEPs were conducted by way of posterior column somatosensory pathway and thalamocortical pathway and that specific patterns of the SSEPs were recorded from the nucleus gracilis, VPL, and cerebral cortex. Conclusion : The specially designed recording electrode was found to be very useful in recording the localized SSEFPs and the transcutaneous electrical stimulation using ball electrode was effective in evoking SSEPs. The characteristic shapes, latencies, and conduction velocities of each potentials are expected to be used the fundamental data for the future study of brain functions, including the hydrocephalus model, middle cerebral artery ischemia model, and so forth.

  • PDF

Intensity of Aerobic Exercise and Level of Cognitive Task on Computerized Neurobehavioral System

  • Kim, Tae-Hoon;Park, Ji-Hyuk;Kim, Jong-Eon
    • International Journal of Contents
    • /
    • 제6권3호
    • /
    • pp.83-88
    • /
    • 2010
  • Aerobic exercise affects cerebral circulation, action of neurotransmitters, glucose, oxygen, and energetic substances and influence on the central nervous system for cognition. This study suggests that both the intensity of exercise and the level of cognitive task need to be considered. Computerized neurobehavioral testing is a more effective method, compared to conventional methods, of neuropsychological testing when measuring cognition objectively, in cases that we found. The intensity of 80% max HR had effect on more complex tasks such as 3 Digit Addition and Digit Span Backward, and the intensity of 65% max HR had an effect on more simple tasks such as Color Word Vigilance and Digit Span Forward. We can assume that different intensity of aerobic exercise might involve specific areas of the brain as they could have different sensitivities, so further studies measuring regional cerebral blood flow or electroencephalogram are needed to confirm the results.

An Analytical Comparison in Electoencephalography and Electrocardiography under Pulsed Magnetic Field and Acupuncture Stimulus on Acupoint PC9

  • Lee, Hyun Sook;Hwang, Do Guwn;Cha, Yun-Yeop
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.192-196
    • /
    • 2013
  • We have investigated the changes of electroencephalography (EEG) and electrocardiography (ECG) under pulsed magnetic field (PMF) and acupuncture stimulus on acupoint PC9. In order to compare quantitatively the effect of PMF and acupuncture stimulus, the difference of alpha activities are calculated from EEG spectra, and the spectrum curves of ECG were analyzed in the frequency domain of heart rate variability (HRV). The increase of alpha activities after both stimuli could be explained that the impulse of stimulus on PC9 might pass through sensory nerve following meridian and approach the cerebral cortex, causing the central nervous system (CNS) to be activated for pacifying emotion and calming the mind. The decrease in sympathovagal activity of HRV after both stimuli indicates that parasympathetic nerves were activated and the sympathetic nerves were in constrained condition. These findings suggest that PMF could be patient-friendly alternative non-invasive medical treatment for influencing human physiology, in comparison with acupuncture inserting the needle and inducing nervous and anxious state to subject.

Possible Role of Heme Oxygenase-1 and Prostaglandins in the Pathogenesis of Cerebral Malaria: Heme Oxygenase-1 Induction by Prostaglandin $D_2$ and Metabolite by a Human Astrocyte Cell Line

  • Kuesap, Jiraporn;Na-Bangchang, Kesara
    • Parasites, Hosts and Diseases
    • /
    • 제48권1호
    • /
    • pp.15-21
    • /
    • 2010
  • Astrocytes are the most abundant cells in the central nervous system that play roles in maintaining the blood-brain-barrier and in neural injury, including cerebral malaria, a severe complication of Plasmodium falciparum infection. Prostaglandin (PG) $D_2$ is abundantly produced in the brain and regulates the sleep response. Moreover, $PGD_2$ is a potential factor derived from P. falciparum within erythrocytes. Heme oxygenase-1 (HO-1) is catalyzing enzyme in heme breakdown process to release iron, carbon monoxide, and biliverdin/bilirubin, and may influence iron supply to the P. falciparum parasites. Here, we showed that treatment of a human astrocyte cell line, CCF-STTG1, with $PGD_2$ significantly increased the expression levels of HO-1 mRNA by RT-PCR. Western blot analysis showed that $PGD_2$ treatment increased the level of HO-1 protein, in a dose- and time-dependent manner. Thus, $PGD_2$ may be involved in the pathogenesis of cerebral malaria by inducing HO-1 expression in malaria patients.

Neuroprotective Effect of Chronic Intracranial Toxoplasma gondii Infection in a Mouse Cerebral Ischemia Model

  • Lee, Seung Hak;Jung, Bong-Kwang;Song, Hyemi;Seo, Han Gil;Chai, Jong-Yil;Oh, Byung-Mo
    • Parasites, Hosts and Diseases
    • /
    • 제58권4호
    • /
    • pp.461-466
    • /
    • 2020
  • Toxoplasma gondii is an obligate intracellular protozoan parasite that can invade various organs in the host body, including the central nervous system. Chronic intracranial T. gondii is known to be associated with neuroprotection against neurodegenerative diseases through interaction with host brain cells in various ways. The present study investigated the neuroprotective effects of chronic T. gondii infection in mice with cerebral ischemia experimentally produced by middle cerebral artery occlusion (MCAO) surgery. The neurobehavioral effects of cerebral ischemia were assessed by measurement of Garcia score and Rotarod behavior tests. The volume of brain ischemia was measured by triphenyltetrazolium chloride staining. The expression levels of related genes and proteins were determined. After cerebral ischemia, corrected infarction volume was significantly reduced in T. gondii infected mice, and their neurobehavioral function was significantly better than that of the uninfection control group. Chronic T. gondii infection induced the expression of hypoxia-inducible factor 1-alpha (HIF-1α) in the brain before MCAO. T. gondii infection also increased the expression of vascular endothelial growth factor after the cerebral ischemia. It is suggested that chronic intracerebral infection of T. gondii may be a potential preconditioning strategy to reduce neural deficits associated with cerebral ischemia and induce brain ischemic tolerance through the regulation of HIF-1α expression.