• Title/Summary/Keyword: Cerebral Activation

Search Result 173, Processing Time 0.021 seconds

The Cortical Activation by Functional Electrical Stimulation, Active and Passive Movement (능동 및 수동 운동과 기능적 전기자극에 의한 대뇌 피질의 활성화)

  • Kwon, Yong-Hyun;Jang, Sung-Ho;Han, Bong-Soo;Choi, Jin-Ho;Lee, Mi-Young;Chang, Jong-Sung
    • Physical Therapy Korea
    • /
    • v.12 no.2
    • /
    • pp.73-80
    • /
    • 2005
  • We investigated the activation of the cerebral cortex during active movement, passive movement, and functional electrical stimulation (FES), which was provided on wrist extensor muscles. A functional magnetic resonance imaging study was performed on 5 healthy volunteers. Tasks were the extension of right wrist by active movement, passive movement, and FES at the rate of .5 Hz. The regions of interest were measured in primary motor cortex (M1), primary somatosensory cortex (SI), secondary somatosensory cortex (SII), and supplementary motor area (SMA). We found that the contralateral SI and SII were significantly activated by all of three tasks. The additional activation was shown in the areas of ipsilateral S1 (n=2), and contralateral (n=1) or ipsilateral (n=2) SII, and bilateral SMA (n=3) by FES. Ipsilateral M1 (n=1), and contralateral (n=1) or ipsilateral SII (n=1), and contralateral SMA (n=1) were activated by active movement. Also, Contralateral SMA (n=3) was activated by passive movement. The number of activated pixels on SM1 by FES ($12{\pm}4$ pixels) was smaller than that by active movement ($18{\pm}4$ pixels) and nearly the same as that by passive movement ($13{\pm}4$ pixels). Findings reveal that active movement, passive movement, and FES had a direct effect on cerebral cortex. It suggests that above modalities may have the potential to facilitate brain plasticity, if applied with the refined-specific therapeutic intervention for brain-injured patients.

  • PDF

Effects of Ankle Control Training Using Neuromuscular Electrical Stimulation on Leg Muscle Activation and Balance in Patients with Stroke

  • Soo-Yong Lee;Hyo-Jung Park;Yu-Sik Choi
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.5
    • /
    • pp.145-150
    • /
    • 2023
  • Purpose: This study examined the effects of ankle control training using neuromuscular electrical stimulation (NMES), leg muscle activation, and balance in stroke patients. Methods: Thirty-one stroke patients diagnosed with cerebral infarction and cerebral hemorrhage were selected for the study. The experimental group underwent ankle control training using NMES, while the control group applied NMES to the paretic tibialis anterior muscle for 30 minutes per session, five times a week for four weeks. The muscle activity changes were measured using surface electromyography, and balance parameters were evaluated using a functional reach test (FRT). Results: The intra-group comparison of the concentric muscle activity revealed improvements in the experimental group, including paretic tibialis anterior (TA) muscle (p<0.05), medial gastrocnemius muscle (MG) (p<0.01), and lateral gastrocnemius muscle (LG) (p<0.05), as well as MG (p<0.05), LG (p<0.05), soleus muscle (p<0.05) of the non-paretic side, and soleus muscle symmetry index (p<0.05). The intra-group comparison of the eccentric muscle activity showed improvements in the experimental group, including MG (p<0.01) and LG (p<0.01) of the paretic side, as well as MG (p<0.01), LG (p<0.01) of the non-paretic side, and LG symmetry index (p<0.01). The intra-group comparison of the functional reach test revealed significant differences in the test results in the experimental and control groups (p<0.05). Conclusion: Ankle control training using NMES had a positive effect on the changes in muscle activation and improved balance in patients with stroke.

Involvement of Vascular NAD(P)H Oxidase-derived Superoxide in Cerebral Vasospasm after Subarachnoid Hemorrhage in Rats

  • Kim, Dong-Eun;Kim, Chi-Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.1
    • /
    • pp.15-19
    • /
    • 2002
  • The role of vascular NAD(P)H oxidase in subarachnoid hemorrhage (SAH)-induced vasospasm in the basilar artery was examined in a rat model. Arterial vasospasm characterized by increased wall thickness and decreased lumen size was observed at 5 to 7 days after $2^{nd}$ injection of blood into cisterna magna, and these changes were significantly ameliorated by pretreatment of diphenyleneiodonium $(DPI,\;25\;{\mu}l\;of\;100\;{\mu}M),$ an inhibitor of NAD(P)H oxidase. To determine the time course of changes in the vascular NAD(P)H oxidase activity, cerebral vasculature was isolated at different time intervals from 12 hrs to 14 days after injection of autologous blood. At 24 hrs after the second injection of blood, the NAD(P)H oxidase activity was markedly increased with an enhanced membrane translocation of p47phox, but by 48 hours both the enzyme activity and p47phox translocation regained normal values, and were remained unchanged up to 14 days after SAH. However, no significant changes in the expression of p22phox mRNA was observed throughout the experiments. These findings suggest that the activation of NAD(P)H oxidase by which assembly of the oxidase components enhanced and subsequent production of superoxide in the early stages of SAH might contribute to the delayed cerebral vasospasm in SAH rats.

The Effects of Jujadokseo-hwan on the Activation of Brain and Neuroprotactive Effects (주자독서환의 뇌기능 활성 및 신경세포 보호효과)

  • Lee, Yu-Gyung;Chae, Jung-Won
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.241-262
    • /
    • 2009
  • Objectives This study is designed to investigate the effects of Jujadokseo-hwan on the brain ability and inducing oxidative stresses. Methods We measured the changes of regional cerebral blood flow and mean arterial blood pressure. Then we analyzed histological examination, immunohistochemistric response and anti-oxidant activity of Jujadokseo-hwan. Results 1. Treatment of Jujadokseo-hwan significantly increased regional cerebral blood flow but decreased mean arterial blood pressure. 2. Treatment of Jujadokseo-hwan-induced increase of regional cerebral blood flow was significantly inhibited by pretreatment with indomethacin (1 mg/kg, i.p.), an inhibitor of cyclooxygenase. 3. In histological examination through TTC stain, group I was no change, but group II showed that discolored in the most cortical part. Group III showed that decreased discolor in the cortical part. 4. In immunohistochemistric response of BDNF, group II showed that lower response effect. Group III showed that increase response effect. 5. Treatment of Jujadokseo-hwan increased proliferation rates of Glial cell effectively 6. Treatment of Jujadokseo-hwan accelerated proliferation rates of C6 cells in vitro. In addition, protective effects on cell death induced by paraquat, rotenone and hydrogen peroxide. In addition, activity of SOD were increased by treatment with Jujadokseo-hwan. Conclusions In conclusion, Jujadokseo-hwan can improve of the brain ability, learning ability, memory ability and induce ischemic brain injuries.

  • PDF

Magnetoencephalographic Study on the cerebral neural activities related to the processing of lexically ambiguous words (뇌자도를 이용한 어휘적 중의성의 처리와 관련된 대뇌 신경활동 분석)

  • Yu, Gi-Soon;Kim, June-Sic;Chung, Chun-Kee;Nam, Ki-Chun
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.59-63
    • /
    • 2007
  • Neuromagnetic fields were recorded from normal 10 subjects to investigate the time course of cerebral neural activation during the resolution of lexical ambiguity. All recordings were made using a whole-head 306-channel MEG (Elekta Neuromag TM Inc., $Vectorview^{TM}$). The observed activity was described by sLORETA (standardized low resolution brain electromagnetic tomography) techniques implemented in CURRY software (Neuroscan). In the results, bilaterally occipito-temporal lobe was activated at 170ms. At 250ms was associated with bilateral temporal lobe during ambiguous condition, whereas in left parietal, temporal lobe on unambiguous condition. The left frontal lobe, temporal lobe were activated at 350ms for all condition. At approximately 430ms, was activated in right frontal, temporal lobe on the resolving ambiguous condition, in left parietal lobe, right temporal lobe on the preserving ambiguous condition. In conclusion, the cerebral activations related to the resolving lexical ambiguity were right frontal lobe and the areas of mountainous ambiguity were left parietal lobe.

  • PDF

The Effect of Docosahexaenoic Acid on Brain Function and Acetylcholine Level in Cerebral Cortex of Electroconvulsive Shock Induced Mice (Docosahexaenoic acid가 전기충격성 뇌장애 마우스의 기억력 및 Acetylcholine량 변화에 미치는 영향)

  • 김문정;신정희;윤재순
    • YAKHAK HOEJI
    • /
    • v.39 no.3
    • /
    • pp.231-242
    • /
    • 1995
  • Electroconvulsive shock (ECS) increases the activity of acetylchohnesterase and decreases in brain acetylcholine levels. A large amount of free fatty acids accumulated in the brain tissue affects cerebral blood flow, brain edema and inflammation and results in brain injury. The present study examined the effect of docosahexaenoic acid (DHA) and D,L-pyroglutamic acid (D,L-PCA) on the learning and memory deficit using the passive avoidance failure technique and on the change of acetylcholine and choline level in the cerebral cortex of ECS-induced mice. The application of ECS (25mA, 0.5sec) induced a significant decrease in memory function for 30 min. ECS-induced a significant decrease in cortical acetylcholine and choline levels 1 min following the ECS application, which were almost recovered to ECS control level after 30 min. DHA (20 mg/kg, i.p.). administered 24 hr before shock. prevented the ECS-induced passive avoidance failure and the decrease of acetylcholine level 1 min following the ECS application. DHA failed to elicit a change in cortical choline level. DHA did not affect memory function and the cortical Ach and choline level of normal mice. The administration of D,L-PCA (500 mg/kg, i.p.) increased the effect of DHA on memory function and the change of cortical acetylcholine level of ECS induced mice. These results suggest that DHA treatment may be contributed to the prevention against memory deficit, and to the activation of cholinergic system in the ECS induced mice.

  • PDF

Role of vascular smooth muscle cell in the inflammation of atherosclerosis

  • Lim, Soyeon;Park, Sungha
    • BMB Reports
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Atherosclerosis is a pathologic process occurring within the artery, in which many cell types, including T cell, macrophages, endothelial cells, and smooth muscle cells, interact, and cause chronic inflammation, in response to various inner- or outer-cellular stimuli. Atherosclerosis is characterized by a complex interaction of inflammation, lipid deposition, vascular smooth muscle cell proliferation, endothelial dysfunction, and extracellular matrix remodeling, which will result in the formation of an intimal plaque. Although the regulation and function of vascular smooth muscle cells are important in the progression of atherosclerosis, the roles of smooth muscle cells in regulating vascular inflammation are rarely focused upon, compared to those of endothelial cells or inflammatory cells. Therefore, in this review, we will discuss here how smooth muscle cells contribute or regulate the inflammatory reaction in the progression of atherosclerosis, especially in the context of the activation of various membrane receptors, and how they may regulate vascular inflammation.

The cerebral representation related to lexical ambiguity and idiomatic ambiguity (어휘적 중의성 및 관용적 중의성을 처리하는 대뇌 영역)

  • Yu Gisoon;Kang Hongmo;Jo Kyungduk;Kang Myungyoon;Nam Kichun
    • Proceedings of the KSPS conference
    • /
    • 2003.10a
    • /
    • pp.79-82
    • /
    • 2003
  • The purpose of this study is to examine the regions of the cerebrum that handles the lexical and idiomatic ambiguity. The stimuli sets consist of two parts, and each part has 20 sets of sentences. For each part, 10 sets are experimental conditions and the other 10 sets are control conditions. Each set has two sentences, the 'context' and 'target' sentences, and a sentence-verification question for guaranteeing patients' concentration to the task. The results based on 15 patients showed that significant activation is present in the right frontal lobe of the cerebral cortex for both kinds of ambiguity. It means that right hemisphere participates in the resolution of ambiguity, and there are no regions specified for lexical ambiguity or idiomatic ambiguity alone.

  • PDF

Cognitive neuropsychological assesment in pure alexic patient with letter-by-letter reading using fMRl - Single case study - (주변성 난독증의 특성과 대뇌활성화 양상 - 단일사례연구 -)

  • Sohn, Hyo-Jeong;Pyun, Sung-Bom;Kim, Chung-Myung;Nam, Ki-Chun
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.137-140
    • /
    • 2005
  • In this study we investigated the cognitive neuropsychological characteristics and the underlying mechanism in a letter-by-letter reading dyslexic patient after cerebral infarct of left posterior cerebral artery using fMRl, The results of cognitive neuropsychological assesment are visual perception was appropriate, and semantic categorization, picture naming and picture-word matching tasks were above83% correct, respectively. However, she was very poor in lexical decision task. The selective reading impairment is thought to result from the disruption of the left occipitotemporal region included fusiform gyrus. In fMRl results, the activation level increase din the right occipitotemporal region included fusiform gyrus compared with normal group in compensation for left impairment and more increased in pseudo word reading task than word reading on account of familiarity.

  • PDF

Estrogen Pretreatment of Organotypic Hippocampal Slices Protects Neurons against Oxygen-Glucose Deprivation with Akt Activation

  • Park, Eun-Mi;Park, Sung-Hui;Lee, Kyung-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.3
    • /
    • pp.123-129
    • /
    • 2006
  • In several experimental models, estrogens protect neurons against ischemic insults. However, the recent clinical studies of hormone replacement showed negative results to prevent stroke. Therefore, optimal models to study estrogen replacement for neuroprotection are needed before its clinical ap-plication. Organotypic hippocampal slice under oxygen-glucose deprivation (OGD) has been established as a model of cerebral ischemia and has advantages to study drug effects. We investigated whether estrogen protected CAI neurons and affected activation of Akt (pAkt) in CAI region under OGD. Thus, rat hippocampal slices on day 7 of culture were treated with $17-{\beta}$ estradiol (E, 1 nM) for 7 days before 30 min OGD, and cell death of CAI neurons was quantified by propidium iodide (PI) staining and expression of pAkt was studied by Western blot and immunofluorescence. PI intensity in slices treated with E was significantly reduced 72 hour after OGD compared to that of non-treated slices (p < 0.05). E pretreatment also increased the expression of pAkt 72 hour after OGD compared to that of no treatment (p<0.01). These data suggest that estrogen pretreatment may rescue neurons from ischemic insults through the activation of Akt and also indicate that our model would be a useful alternative method to study the mechanisms and effects of estrogen replacement treatment for neuroprotection.