• 제목/요약/키워드: Ceramic stack

검색결과 58건 처리시간 0.026초

전산 유체 모델링을 이용한 평판형 고체산화물 연료전지 작동특성 전산모사 (Performance Simulation of Planar Solid Oxide Fuel Cells Characteristics: Computational Fluid Dynamics)

  • 우효상;정용재
    • 전기화학회지
    • /
    • 제7권2호
    • /
    • pp.69-79
    • /
    • 2004
  • 전산모사를 이용하여 특성을 정확하게 모사하기 위해서는 전지 내부에서 발생하는 다양한 물리적, 화학적 현상을 고려하여야 한다. 이를 위해, 본 연구에서는 다양한 전지 내부 현상에 대한 변수를 고려할 수 있는 전산유체 상용코드인 CFD-ACE+를 이용하여 평판형 고체산화물 연료전지의 작동 특성을 분석하였다. 단위 스택에서 발생하는 물질전달과 열전달 및 전기화학 반응에 의한 전하이동을 복합적으로 고려하여, 작동조건 하에서 각 공정적, 구조적 변수 변화에 따른 전지특성을 예측하였다. 이러한 전산모사 방법을 통하여 확산과 유동에 의한 전지 내 반응물과 생성물의 mass fraction 분포와 단위 스택의 내부 온도분포 그리고 전지 특성을 나타내는 polarization curve에 의한 고체산화물 연료 전지의 분극 특성을 정성, 정량적으로 제시하였다. 본 연구를 통해 평판형 단위 스택 내에서의 다양한 변수 변화에 따른 전지의 작동 특성에 대한 효율적 예측이 가능하였고, 고체산화물 연료전지 작동 시 발생하는 현상에 대한 전산모사 접근법을 체계적으로 제시할 수 있었다.

단결정 PMN-29PT 적층형 작동기: 제작과 성능 (A Single-crystal PMN-29PT Stack Actuator: Fabrication and Performance)

  • 박훈철;아디아타마 판지;이호용
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.545-550
    • /
    • 2013
  • Piezoelectric PMN-29PT single crystal multilayer actuators [100 $mm^2$ in cross section and 22 mm in length] are designed and fabricated by stacking square plates [$10{\times}10{\times}0.5(t)\;mm^3$] of PMN-29PT single crystals having a $d_{33}$ of about 1,500 pC/N. The characteristics of PMN-29PT multilayer actuators are compared with those of P-025.40P multilayer PZT ceramic actuators [490 $mm^2$ in cross section and 60 mm in length] produced by PI in Germany. Even though the total volume of the PMN-29PT single crystal multilayer actuator is only about 7.5% of that of the P-025.40P ceramic multilayer actuator, PMN-29PT single crystal multilayer actuators are expected to show very similar properties to P-025.40P ceramic actuators in terms of static stroke and blocking force. Therefore, on the basis of their smaller mass and volume compared to the conventional PZT ceramic multilayer actuators, piezoelectric PMN-29PT single crystal multilayer actuators have significant potential regarding the development of various high performance actuators for aerospace subsystems.

SOFC용 LYSMO세라믹 IC에서 소결조제 첨가에 따른 소결특성 (Effect of Sinterring aid in LYSMO Ceramic interconnector for SOFC application)

  • 서한;최병현;지미정;안용태;박성태;이준호;주병권
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.128.1-128.1
    • /
    • 2010
  • 본 연구는 세라믹 연결재로 사용되는 Perovskite 구조의 LYSMO조성의 실제 SOFC stack적용을 위한 소결온도 제어방법에 관해 연구하였다. SOFC 단전지에서 IC소재는 $1300{\sim}{\cdot}1400^{\circ}C$의 온도에서 소결이 이루어져만 하나 현재 연구발표된 IC는 대부분이 $1500^{\circ}C$ 이상에서 소결이 되므로 실제 stack적용에 문제가 있다. 이러한 문제를 해결하기위해 IC소재에 소결조제를 첨가하여 소결온도를 제어코자 하였다. 실험결과 $MgB_6$$LaB_6$등의 불화물계의 첨가가 세라믹 연결재의 소결온도 감소에 효과적인 것으로 나타났다. 소결조제의 첨가는 소결온도의 감소를 이끌었지만 열팽창 계수에는 큰 영향을 끼치지는 않았다. 하지만 전기적 특성은 큰 폭으로 감소하여 전기전도도 개선을 위한 다른 방안이 필요함을 확인할 수 있었다.

  • PDF

적층형 세라믹 액츄에이터의 유전 및 압전특성 (Dielectric and Piezoelectric Properties in Multilayer Ceramic Actuator)

  • 최형봉;정순종;하문수;고중혁;이대수;송재성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.615-618
    • /
    • 2004
  • The piezoelectricity and polarization of multilayer ceramic actuators, being designed to stack ceramic layer and electrode layer alternately, were investigated under a consideration of geometry, the thickness ratio of the ceramic layer to electrode layer The actuators were fabricated by tape-casting of $0.42PbTiO_3-0.38PbZrO_3-0.2Pb(Mn_{1/3}Nb_{2/3})O_3$ followed by laminating, burn-out and co-firing process. The actuators of $5\times5mm^2$ in area were formed in a way that $60{\sim}200{\mu}m$ thick ceramics were stacked 10 times alternately with $5{\mu}m$ thick electrode. Increase in polarization and electric field-displacement with increasing thickness ratio of the ceramic/electrode layer and thickness/cross section ratio were attributed to the change of $non-180^{\circ}/180^{\circ}$ domain ratio which was affected by the interlayer internal stress and Poisson ratio of ceramic layer. The piezoelectricity and actuation behaviors were found to be dependent upon the volume ratio (or thickness ratio) of ceramic layer relative to ceramic layer. Concerning with the existence of internal stress, the field-induced polarization and deformation were described in the multilayer actuator.

  • PDF

고체산화물 연료전지의 전극과 스택운영의 기능적 분석 (Functional Analysis of Electrode and Small Stack Operation in Solid Oxide Fuel Cell)

  • 배중면;김기현;지현진;김정현;강인용;임성광;유영성
    • 한국세라믹학회지
    • /
    • 제43권12호
    • /
    • pp.812-822
    • /
    • 2006
  • This study amis to investigate the functional analysis of anode and cathode materials in Anode supported Solid Oxide Fuel Cell. The concentration polarization of single cell was investigated with CFD (Computational Fluid Dynamics) method for the case of the different morphology by using four types of unit cell and discussed to reduce the concentration polarization. The concentration polarization at anode side effected the voltage loss in Anode supported Solid Oxide Fuel Cell and increased contact areas between fuel gas and anode side could reduce the concentration polarization. For intermediate temperature operation, Anode-supported single cells with thin electrolyte layer of YSZ (Yttria-Stabilized Zirconia) were fabricated and short stacks were built and evaluated. We also developed diesel and methane autothermal reforming (ATR) reactors in order to provide fuels to SOFC stacks. Influences of the $H_2O/C$ (steam to carbon ratio), $O_2/C$ (oxygen to carbon ratio) and GHSV (Gas Hourly Space Velocity) on performances of stacks have been investigated. Performance of the stack operated with a diesel reformer was lower than with using hydrogen as a fuel due to lower Nernst voltage and carbon formation at anode side. The stack operated with a natural gas reformer showed similar performances as with using hydrogen. Effects of various reformer parameters such as $H_2O/C$ and $O_2/C$ were carefully investigated. It is found that $O_2/C$ is a sensitive parameter to control stack performance.

인산형 연료전지(PAFC)용 전해질 매트릭스의 제조방법이 전극/매트릭스 계면특성에 미치는 영향 (Effect of Preparation Methods of a Matrix Retaining Electrolyte on the Characteristics of a Phosphoric Acid Fuel Cell)

  • 윤기현;최재열;장재혁;김창수
    • 한국세라믹학회지
    • /
    • 제34권12호
    • /
    • pp.1205-1212
    • /
    • 1997
  • The matrices which consisted of SiC whisker, PES(polyesterasulfone) as a binder, span 80(sorbitan monooleate) as a surfactant, TPP(triphenyl phosphate) as a plasticizer and dichloromethane as a solvent, have been prepared by the various methods such as tape casting, rolling, tape cast-coating and roll-coating method. The fuel cells of single stack type using these matrices are characterized by ac impedance spectroscopy and cyclic voltammetry technique. A fuel cell using a matrix prepared by the tape cast-coating method shows the best performance of 466.34 mA/$\textrm{cm}^2$ at 0.6V because it has the lowest polarization resistance at the interface between electrodes and a matrix due to the largest three phase contact region of gases, catalyst and electrolyte.

  • PDF

Solid Oxide Fuel Cells Designs, Materials, and Applications

  • Singhal Subhash C.
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.777-786
    • /
    • 2005
  • The Solid Oxide Fuel Cell (SOFC) is an electrochemical device to convert chemical energy of a fuel into electricity at temperatures from about 600 to $1000^{\circ}C$. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use CO as a fuel rather than being poisoned by it, and high grade exhaust heat for combined heat and power, or combined cycle gas turbine applications. This paper reviews the operating principle, materials for different cell and stack components, cell designs, and applications of SOFCs. Among all designs of Solid Oxide Fuel Cells (SOFCs), the most progress has been achieved with the tubular design. However, the electrical resistance of tubular SOFCs is high, and specific power output $(W/cm^2)$ and volumetric power density $(W/cm^3)$ low. Planar SOFCs, in contrast, are capable of achieving very high power densities.

Mist-CVD법으로 증착된 다결정 산화갈륨 박막의 MOSFET 소자 특성 연구 (Characteristics of MOSFET Devices with Polycrystalline-Gallium-Oxide Thin Films Grown by Mist-CVD)

  • 서동현;김용현;신윤지;이명현;정성민;배시영
    • 한국전기전자재료학회논문지
    • /
    • 제33권5호
    • /
    • pp.427-431
    • /
    • 2020
  • In this research, we evaluated the electrical properties of polycrystalline-gallium-oxIde (Ga2O3) thin films grown by mist-CVD. A 500~800 nm-thick Ga2O3 film was used as a channel in a fabricated bottom-gate MOSFET device. The phase stability of the β-phase Ga2O3 layer was enhanced by an annealing treatment. A Ti/Al metal stack served as source and drain electrodes. Maximum drain current (ID) exceeded 1 mA at a drain voltage (VD) of 20 V. Electron mobility of the β-Ga2O3 channel was determined from maximum transconductance (gm), as approximately, 1.39 ㎠/Vs. Reasonable device characteristics were demonstrated, from measurement of drain current-gate voltage, for mist-CVD-grown Ga2O3 thin films.

Stability of Sputtered Hf-Silicate Films in Poly Si/Hf-Silicate Gate Stack Under the Chemical Vapor Deposition of Poly Si and by Annealing

  • Kang, Sung-Kwan;Sinclair, Robert;Ko, Dae-Hong
    • 한국세라믹학회지
    • /
    • 제41권9호
    • /
    • pp.637-641
    • /
    • 2004
  • We investigated the effects of SiH$_4$ gas on the surface of Hf-silicate films during the deposition of polycrystalline (poly) Si films and the thermal stability of sputtered Hf-silicate films in poly Si/Hf-silicate structure by using High Resolution Transmission Electron Microscopy (HR-TEM) and X-ray Photoelectron Spectroscopy (XPS). Hf-silicate films were deposited by using DC-mag-netron sputtering with Hf target and Si target and poly Si films were deposited at 600$^{\circ}C$ by using Low Pressure Chemical Vapor Deposition (LPCVD) with SiH$_4$ gas. After poly Si film deposition at 600$^{\circ}C$, Hf silicide layer was observed between poly Si and Hf-silicate films due to the reaction between active SiH$_4$ gas and Hf-silicate films. After annealing at 900$^{\circ}C$, Hf silicide, formed during the deposition of poly Si, changed to Hf-silicate and the phase separation of the silicate was not observed. In addition, the Hf-silicate films remain amorphous phase.