• Title/Summary/Keyword: Ceramic package

Search Result 120, Processing Time 0.03 seconds

Packaging technology using LTCC (Low Temperature Cofired Ceramic)/LTCC-M (Low Temperature Cofired Ceramic on Metal) technologies (LTCC/LTCC-M 기술을 이용한 packaging technology)

  • 문제도
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.3-6
    • /
    • 2002
  • 본 논문에서는 LTCC 및 LTCC-M 기술에 관한 소개 및 그 기술을 이용한 응용 module 제작과 패키징 기술에 관하여 소개한다. 현재 microelectro-packaging 분야에서 연구가 활발히 진행되고 있는 SOP (System-On-a-Package) 패키징 기술을 구현하기위한 수동소자의 내부 실장과 LTCC/LTCC-M 기술을 이용한 패키징이나 소자 제작시 고려되어야 항목들에 대하여 언급하고 LTCC 기술의 응용 모듈 및 LTCC-M 기술의 응용 분야의 하나인 PDP 격벽 제조 기술에 관하여 소개한다.

  • PDF

Development of the RF SAW filters based on PCB substrate (PCB 기판을 이용한 RF용 SAW 필터 개발)

  • Lee, Young-Jin;Im, Jong-In
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.8-13
    • /
    • 2006
  • Recent RF SAW filters are made using a HTCC package with a CSP(chip scale Package) technology. This paper describes a development of a new $1.4{\times}1.1\;and\;2.0{\times}1.4mm$ RF SAW liters made by PCB substrate instead of HTCC package, and this technology can reduce the cost of materials down to 40%. We have investigated the multi-layered PCB substrate structures and raw materials to find out the optimal flip-bonding condition between the $LiTaO_3$ wafer and PCB substrates. Also the optimal materials and processing conditions of epoxy laminating film were found out through the experiments which can reduce the bending moment caused by the difference of the thermal expansion between the PCB substrate and laminating film. The new PCB SAW filter shows good electrical and reliability performances with respect to the present SAW filters.

Variation of Dielectric Constant with Various Particle Size and Packing Density on Inkjet Printed Hybrid $BaTiO_3$ Films

  • Lim, Jong-Woo;Kim, Ji-Hoon;Yoon, Young-Joon;Yoon, Ho-Gyu;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.271-271
    • /
    • 2010
  • $BaTiO_3$(BT) has high permittivity so that has been applied to dielectric and insulator materials in 3D system-level package integration. In order to achieve excellent performance of device, the BT layer should be highly dense. In this study, BT thick films were prepared by the inkjet printing method. And these films were cured at $280^{\circ}C$ after infiltration of polymer resin. As a result, we have successfully fabricated not only the inkjet-printed hybrid BT film but also metal-insulator-metal(MIM) capacitor without sintering process. Changes in the dielectric constant of BT hybrid film with particle size and packing density were investigated. The dielectric constant was increased with increasing packing density and particle size. Further, the BT hybrid film using two different size particles had even higher packing density and dielectric constant.

  • PDF

Development of Miniature Quad SAW Filter Bank based on PCB Substrate

  • Lee, Young-Jin;Kim, Chang-Il;Paik, Jong-Hoo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.33-37
    • /
    • 2008
  • This paper describes the development of a new $5.0{\times}3.2mm$ SAW filter bank which is consist of 12 L, C matching components and 4 SAW bare chips on PCB substrate with CSP technology. We improved the manufacturing cost by removing the ceramic package through direct flip bonding of $LiTaO_3$ SAW bare chip on PCB board after mounting L, C passive element on PCB board. After that we realized the hermitic sealing by laminating the epoxy film. To confirm the confidentiality and durability of the above method, we have obtained the optimum flip bonding & film laminating condition, and figured out material property and structure to secure the durability & moisture proof of PCB board. The newly developed super mini $5.0{\times}3.2mm$ filter bank shows the superior features than those of existing products in confidence, electrical, mechanical characters.

Forging Die Design using Ceramic Insert (세라믹 인서트를 이용한 단조 금형설계)

  • 권혁홍
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.9-17
    • /
    • 2000
  • The use of ceramic inserts in steel forging tools offers significant technical and economic advantages over other materi-als of manufacture. These potential benefits can however only be realised by optimal design of the tools so that the ceramic insert are not subjected to stresses that led to their premature failure. In this paper the data on loading of the tools is determined from a commercial forging simulation package as the contact stress distribution on the die-workpiece interface and as temperature distributions in the die. This data can be processed as load input data for a finite-element die-stress analysis. Process simulation and stress analysis are thus combined during the design and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic detections generated in shrink fitting the die inserts and that caused by the stresses generated in the forging process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads. Simulation results have been validated as a result of experimental investigation. Laboratory tests on ceramic insert dies have verified the superior performance of the Zirconia and Silicon Nitride ceramic insert in order to prolong maintenance life.

  • PDF

Effect of Marangoni flow on Surface Roughness and Packing Density of Inkjet-printed Alumina Film by Modulating Ink Solvent Composition

  • Jang, Hun-Woo;Kim, Ji-Hoon;Kim, Hyo-Tae;Yoon, Young-Joon;Kim, Jong-Hee;Hwang, Hae-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.99-99
    • /
    • 2009
  • Two different micro-flows during the evaporation of ink droplets were achieved by engineering both surface tension gradient and compositional gradient across the ink droplet: (1) Coffee-ring generating flow resulting from the outward flow inside the ink droplet & (2) Marangoni flow leading to the circulation flow inside the ink droplet. The surface tension gradient and the compositional gradient in the ink droplets were tailored by mixing two different solvents with difference surface tension and boiling point. In order to create the coffee-ring generating flow (outward flow), a single-solvent system using N,N-dimethylformamide with nano-sized spherical alumina particles was formulated, Marangoni flow (circulation flow) was created in the ink droplets by combining N,N-dimethylformamide and fotmamide with the spherical alumina powders as a co-solvent ink system. We have investigated the effect of these two different flows on the formation of ceramic films by inkjet printing method, The packing density of the ceramic films printed with two different ink systems (single- and co-solvent systems) and their surface roughness were characterized. The dielectric properties of these inkjet-printed ceramic films such as dielectric constant and dissipation factor were also studied in order to evaluate the feasibility of their application to the electronic ceramic package substrate.

  • PDF

Fabrication of Inkjet-printed and Non-sintered $BaTiO_3$ Dielectric Film

  • Lim, Jong-Woo;Kim, Ji-Hoon;Kim, Hyo-Tea;Yoon, Young-Joon;Yoon, Ho-Gyu;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.80-80
    • /
    • 2009
  • $BaTiO_3$ has high permittivity so that has been applied to dielectric and insulator materials in 3D system-level package integration. In order to achieve excellent performance of device, the $BaTiO_3$ layer should be highly dense. In this study, $BaTiO_3$ thick films were prepared by the inkjet printing method using 4 vol.% $BaTiO_3$ colloidal inks and cured at $28^{\circ}C$ for 5 h after infiltration of polymer resin for non-sintered process using 3 vol.% cyanate ester emulsion ink. From the obtained results. packing density was determined to be improved by overlapping rabbit ears which were generated by coffee ring effect. We also calculated the packing densities of the films and correlated these packing densities to the measured permittivity of the films.

  • PDF

Non-linear Temperature Dependent Deformation Anaysis of CBGA Package Assembly Using Moir′e Interferometry (모아레 간섭계를 이용한 CBGA 패키지의 비선형 열변형 해석)

  • 주진원;한봉태
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.1-8
    • /
    • 2003
  • Thermo-mechanical behavior of a ceramic ball grid array (CBGA) package assembly are characterized by high sensitive moire interferometry. Moir fringe patterns are recorded and analyzed at various temperatures in a temperature cycle. Thermal-history dependent analyses of global and local deformations are presented, and bending deformation (warpage) of the package and shear strain in the rightmost solder ball are discussed. A significant non-linear global behavior is documented due to stress relaxation at high temperature. Analysis of the solder interconnections reveals that inelastic deformation accumulates on only eutectic solder fillet region at high temperatures.

  • PDF

LTCC-Based Packaging Technology for RF MEMS Devices (LTCC를 이용한 RF MEMS 소자의 실장법)

  • Hwang, Kun-Chul;Park, Jae-Hyoung;Baek, Chang-Wook;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1972-1975
    • /
    • 2002
  • In this paper, we have proposed low temperature co-fired ceramic (LTCC) based packaging for RF MEMS devices. The packaging structure is designed and evaluated with 3D full field simulation. 50 ${\Omega}$ matched coplanar waveguide(CPW) transmission line is employed as the test vehicle to evaluate the performances of the proposed package structure. The line is encapsulated with the LTCC packaging lid and connected to the via feed line. To reduce the insertion loss due to the packaging lid, the cavity with via post is formed in the packaging lid. The performances of the package structure is simulated with the different cavity depth and via-to-via length. Simulation results show that the proposed package structure has reflection loss better than 20 dB and insertion loss lower than 0.1 dB from DC to 30 GHz with the cavity depth and via-to-via length of 300 ${\mu}m$ and 350 ${\mu}m$, respectively. To realize the designed package structure, the cavity patterning is tested using the sandblast of LTCC.

  • PDF

Recent Overview on Power Semiconductor Devices and Package Module Technology (차세대 전력반도체 소자 및 패키지 접합 기술)

  • Kim, Kyoung-Ho;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In these days, importance of the power electronic devices and modules keeps increasing due to electric vehicles and energy saving requirements. However, current silicon-based power devices showed several limitations. Therefore, wide band gap (WBG) semiconductors such as SiC, GaN, and $Ga_2O_3$ have been developed to replace the silicon power devices. WBG devices show superior performances in terms of device operation in harsh environments such as higher temperatures, voltages and switching speed than silicon-based technology. In power devices, the reliability of the devices and module package is the critically important to guarantee the normal operation and lifetime of the devices. In this paper, we reviewed the recent trends of the power devices based on WBG semiconductors as well as expected future technology. We also presented an overview of the recent package module and fabrication technologies such as direct bonded copper and active metal brazing technology. In addition, the recent heat management technologies of the power modules, which should be improved due to the increased power density in high temperature environments, are described.