• Title/Summary/Keyword: Ceramic microstructure

Search Result 1,359, Processing Time 0.019 seconds

Analysis of bridging Stress Effect of Polycrystlline Aluminas Using Double Cantilever Beam Method (Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석 III. 다결정 알루미나의 Bridging 응력분포)

  • 손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.602-615
    • /
    • 1996
  • The purpose of the present study is to investigate the microstructural effect on the R-curve behavior in three aluminas with different grain size distributions by analyzing the bridging stress distribution. The crack opening displacement (COD) according to the distance behind the stationary crack tip was measured using an in situ SEM fracture method. The measured COD values in the fine-grained alumina agreed well with Wiederhorn's sollution while they deviated from Wiederhorn's solution in the two coarse-grained aluminas because of the increase of the crack closure due to the grain interface bridging in the crack wake. A numerical fitting procedure was conducted by the introduction of the power-law relation and the current theoretical model together with the measured COD's in order to obtain the bridging stress distribution. The results indicated that the bridging stress function and the R-curve computed by the current model were consistent with those computed by the power-law relation providing a reliable evidence for the bridging stress analysis of the current model. The strain-softening exponent in the power-law relation n, was calculated to be in the range from 2 to 3 and was closely related to the grain size distribution. Thus it was concluded from the current theoretical model that the grain size distribution affected greatly the bridging stress distribution thereby resulting in the quantitative analysis of microfracture of polycrystalline aluminas through correlating the local-fracture-cont-rolling microstructure.

  • PDF

The Effect of Nitride Coating on SiC Platelet in $Al_2O_3/SiC$ Hybrid-Composite ($Al_2O_3/SiC$ Hybrid-Composite에서 SiC에 질화물 코팅의 영향)

  • 이수영;임경호;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.406-412
    • /
    • 1997
  • Al2O3/SiC hybrid-composite has been fabricated by the conventional powder process. The addition of $\alpha$-Al2O3 as seed particles in the transformation of ${\gamma}$-Al2O3 to $\alpha$-Al2O3 provided a homogeneity of the microstructure. The grain growth of Al2O3 are significantly surpressed by the addition of nano-size SiC particles. Dislocation were produced due to the difference of thermal expansion coefficient between Al2O3 and SiC and piled up on SiC particles in Al2O3 matrix, resulting in transgranular fracture. The high fracture strength of the composite was contributed to the grain refinement and the transgranular fracture mode. The addition of SiC platelets to Al2O3/SiC nano-composite decreased the fracture strength, but increased the fracture toughness. Coated SiC platelets with nitrides such as BN and Si3N4 enhanced fracture toughness much more than non-coated SiC platelets by enhancing crack deflection.

  • PDF

Characteristics of Sintered Yttria Stabilized Tetragonal Zirconia Polycrystals(3Y-TZP) with Alumina (알루미나가 첨가된 Yttria 안정화 Tetragonal Zirconia Polycrystals 소결체의 특성)

  • 양성구;정재욱;강종봉
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.111-117
    • /
    • 2004
  • 3Y-TZP containing 0.3∼1.2 wt% of $Al_2$O$_3$ was prepared by slip-casting after attrition milling. The specimen was sintered at 1390∼151$0^{\circ}C$ and mechanical characterization and microstructure analysis were conducted. Monoclinic content of the specimen was calculated by XRD. The apparent density of specimen increased with increasing sintering temperature. While above 1470%, the formation of m-ZrO$_2$ degraded the density. The microhardness of specimen decreased with temperature because monoclinic phase increased wit the grain growth. The specimen containing $Al_2$O$_3$ below 0.9 wt% sintered at 143$0^{\circ}C$ showed the highest microhardness of 1360 Hv.

Processing of Al2O3 Ceramics with a Porous Cellular Structure (셀 다공구조를 갖는 Al2O3세라믹스의 제조)

  • Lim, Byong-Gu;Lee, Lak-Hyoung;Ha, Jung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.574-579
    • /
    • 2007
  • Porous $Al_2O_3$ ceramics were prepared by the gelcasting foams method (a slurry foaming process) with acrylamide monomer. The foaming and gelation behavior was investigated with the parameters such as the type and concentration of surfactant, solid loading of slurry, and the concentrations of initiator and catalyst. Density, porosity, microstructure, and strength of the green and sintered samples were characterized. Of the four kinds of surfactants tested, Triton X-114 showed the highest foaming ability for the solid loading of 55-30 vol%. The gelation condition giving the idle time off min was found to set the foamed structure without significant bubble enlargement and liquid lamella thinning. The green samples were fairly strong and machinable and showed maximum strength of 2.4 MPa in diametral compression. The sintered samples showed densities of 10-36% theoretical (i.e. porosity 90-64%) with a highly interconnected network of spherical pores with sizes ranging from 30 to $600{\mu}m$. The pore size and connectivity increased but the cell strut thickness decreased with decreasing the solid loading. Flexural strength of 37.8-1.7 MPa was obtained for the sintered samples.

Fabrication and Properties of Bioactive Porous Ceramics for Bone Substitution (뼈 대체용 생체활성 다공질 세라믹스의 제조 및 특성)

  • Lee, Lak-Hyoung;Ha, Jung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.584-588
    • /
    • 2008
  • Porous hydroxyapatite(HA) and HA-coated porous $Al_2O_3$ possessing pore characteristics required for bone substitutes were prepared by a slurry foaming method combined with gelcasting. The HA coating was deposited by heating porous $Al_2O_3$ substrates in an aqueous solution containing $Ca^{2+}$ and ${PO_4}^{3-}$ ions at $65{\sim}95^{\circ}C$ under ambient pressure. The pore characteristic, microstructure, and compressive strength were investigated and compared for the two kinds of samples. The porosity of the samples was about 81% and 80% for HA and $Al_2O_3$, respectively with a highly interconnected network of spherical pores with size ranging from 50 to $250{\mu}m$. The porous $Al_2O_3$ sample showed much higher compressive strength(25 MPa) than the porous HA sample(10 MPa). Fairly dense and uniform HA coating(about $2{\mu}m$ thick) was deposited on the porous $Al_2O_3$ sample. Since the compressive strength of cancellous bone is $2{\sim}12$ MPa, both the porous HA and HA-coated porous $Al_2O_3$ samples could be successfully utilized as scaffolds for bone repair. Especially the latter is expected suitable for load bearing bone substitutes due to its excellent strength.

Microstructure and Permeability Property of Si Bonded Porous SiC with Variations in the Carbon Content (Si 결합 다공성 탄화규소의 미세구조 및 통기도 특성 -카본 함량 변화 중심)

  • Song, In-Hyuck;Park, Mi-Jung;Kim, Hai-Doo;Kim, Young-Wook;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.546-552
    • /
    • 2010
  • The achievement of high gas permeability is a key factor in the development of porous SiC ceramics for applications of hot gas filter, vacuum chuck, and air spindle. However, few reports on the gas permeability of porous SiC ceramics can be found in the literature. In this paper, porous SiC ceramics were fabricated at temperatures ranging from $1600^{\circ}C$ to $1800^{\circ}C$ using the mixing powders of SiC, silicon, carbon and boron as starting materials. In some samples, expanded hollow microspheres as a pore former were used to make a cellular pore structure. It was possible to produce Si bonded SiC ceramics with porosities ranging from 42% to 55%. The maximum bending strength was 58MPa for the carbon content of 0.2 wt% and sintering temperature of $1700^{\circ}C$. The increase of air permeability was accelerated by addition of hollow microsphere as a pore former.

Effect of Template Content on Microstructure and Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics (기공형성제 함량이 다공질 Mullite-Bonded SiC 세라믹스의 미세구조와 강도에 미치는 영향)

  • Choi, Young-Hoon;Kim, Young-Wook;Woo, Sang-Kuk;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.509-514
    • /
    • 2010
  • Porous mullite-bonded SiC (MBSC) ceramics were fabricated at temperatures ranging from 1400 to $1500^{\circ}C$ for 2 h using silicon carbide (SiC), alumina ($Al_2O_3$), strontium oxide (SrO), and poly (methyl methacrylate-coethylene glycol dimethacrylate) (PMMA) microbeads. The effect of template content on porosity, pore morphology, and flexural strength were investigated. The porosity increased with increasing the template content at the same sintering temperature. The flexural strength showed maximum after sintering at $1450^{\circ}C$/2 h for all specimens due to small pores and dense strut. By controlling the template content and sintering temperature, it was possible to produce porous MBSC ceramics with porosities ranging from 30% to 54%. A maximum flexural strength of ~51MPa was obtained at 30% porosity when no template were used and specimens sintered at $1450^{\circ}C$/2 h.

Properties of Chemical Vapor Deposited ZrC coating layer for TRISO Coated Fuel Particle (화학증착법에 의하여 제조된 탄화지르코늄 코팅층의 물성)

  • Kim, Jun-Gyu;Kum, E-Sul;Choi, Doo-Jin;Lee, Young-Woo;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.580-584
    • /
    • 2007
  • The ZrC layer instead of SiC layer is a critical and essential layer in TRISO coated fuel particles since it is a protective layer against diffusion of fission products and provides mechanical strength for the fuel particle. In this study, we carried out computational simulation before actual experiment. With these simulation results, Zirconium carbide (ZrC) films were chemically vapor deposited on $ZrO_2$ substrate using zirconium tetrachloride $(ZrCl_4),\;CH_4$ as a source and $H_2$ dilution gas, respectively. The change of input gas ratio was correlated with growth rate and morphology of deposited ZrC films. The growth rate of ZrC films increased as the input gas ratio decreased. The microstructure of ZrC films was changed with input gas ratio; small granular type grain structure was exhibited at the low input gas ratio. Angular type structure of increased grain size was observed at the high input gas ratio.

Characterization of Silicon Nitride Coating Films (Si-N 코팅막의 기계적 물성 및 구조 분석)

  • Go, Cheolho;Kim, Bongseob;Yun, Jondo;Kim, Kwangho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.359-365
    • /
    • 2005
  • Silicon nitride coating films with various ratios of nitrogen to silicon contents were prepared and characterized. The film was coated on silicon substrate by sputtering method with changing nitrogen gas flow rate in a chamber. The nitrogen to silicon ratio was found to have values in a range from 0 to 1.4. Coated film was characterized with scanning electron microscopy, transmission electron microscopy, electron probe microanalysis, nanoindentation scanning probe microscopy, x-ray photon spectrometry, and Raman spectrometry. Silicon nitride phase in all samples showed amorphous nature regardless of N/Si ratio. When N/Si ratio was 1.25, hardness and elastic modulus of silicon nitride film showed maximum with 22 GPa and 210 GPa, respectively. Those values decreased, when N/Si ratio was higher than 1.25. Raman spectrum showed that no silicon phase exist in the film. XPS result showed that the silicon-nitrogen bond was dominant way for atomic bonding in the film. The structure and property was explained with Random Bonding Model(RBM) which was consistent with the microstructure and chemistry analysis for the coating films.

Crystal Chemistry and Dielectric Properties of $Bi_4Ti_3O_{12}$ by the Substitution of Rare Earth Elements (Y, Nd, Sm, Gd) (희토류원소(Y, Nd, Sm, Gd)의 치환에 의한 $Bi_4Ti_3O_{12}$의 결정화학 및 유전물성)

  • 고태경;방규석
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1178-1188
    • /
    • 1995
  • Bi4Ti3O12 (BIT) and its rare earth (Y, Nd, Sm, Gd)-substituted derivatives were synthesized using a sol-gel method to investigate their microstructures, cystal structures and electrical properties depending on the subsituted elemetns. Nd- or Sm-substitution into BIT appeared to be favorable, while Y- or Gd-substitution occurred with a pyrochlore phase. This suggests that a smaller trivalent rare earth ion may not be favorable in the structure of BIT. The rare earth derivatives showed that their particle sizes and shapes were considerably different depending on the kinds of substituted elements. Y-substitution resulted in developing a relatively even particle size and a dense microstructure. In structure, they may be similar to the pseudo-orthorhombic BIT but close to a paraelectric tetragonal phase. Their a (or b) axes were shortened, compared to the one of BIT. Such a distortion may result a decrease in the tilting of TiO6. BIT and the derivatives showed that their dielectric constants and losses were 40~120 and less than 0.03, respectively in the frequency range of 1~10 MHz. The dielectric loss of Y-substituted derivative was the lowest one and changed a little to frequency. Curie points were observed in all the derivatives like BIT to suggest that they would be ferroelectric. The temperature stability of the delectric properties of the derivatives below the Curie points were relatively better than the one of BIT.

  • PDF