• Title/Summary/Keyword: Ceramic microstructure

Search Result 1,359, Processing Time 0.027 seconds

Effects of Preparation conditions of sintered GdBa$_2$Cu$_3$Ox on the microstructures and electrical properties (소결체 GdBa$_2$Cu$_3$Ox의 제조 조건이 미세구조 및 전기적 특성에 미치는 영향)

  • 김시열;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.102-104
    • /
    • 1988
  • GdBa$_2$Cu$_3$Ox superconductors were prepared by ceramic powder compacting method. X-ray powder diffraction patterns and SEM microphotographs were taken to analyze phase and microstructure, and electrical properties were investigated by 4-point probe method. The results show that the $N_2$atmosphere enhances the formation of high Tc(critical temperature) phase, but the Tc is independent of sintering conditions.

  • PDF

Fabrication and Characteristics of Low Temperature Firing Substrate by Tape Casting in Fluormica System (Tape Casting에 의한 fluormica계 제조 및 특성 저온 소결 기판의 제조 및 특성)

  • 박대현;최정헌;강원호;김병익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.673-676
    • /
    • 1999
  • We fabricated green sheet by tape casting method with fluormica glass-ceramic powders for fabrication of low temperature co-firing substrate. After ball milling with organic additives, we investigated green strength and density of green sheets which were casted by doctor blade machine. Green sheets were sintered at 700 ~ 1,00$0^{\circ}C$ for 1 ~3hrs. Microstructure, linear shrinkage and dielectric constant of substrates were surveyed.

  • PDF

Effects of Various Acid Etching Methods on the Shear Bond Strength between Iithium Disilicate Ceramic and Composite Resin (다양한 산처리 방법이 lithium Disilicate 도재와 복합레진간의 전단결합강도에 미치는 영향)

  • Kang, Dae-Hyun;Bok, Won-Mi;Song, Jin-Won;Song, Kwang-Yeob;Ahn, Seung-Ggeun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.149-159
    • /
    • 2006
  • Statement of problem. Porcelain repair mainly involves replacement with composite resin, but the bond strength between composite resin and all-ceramic coping materials has not been studies extensively. Purpose. The objective of this study was to investigate the influence of composite resin and ceramic etching pattern on shear bond strength of Empress2 ceramic and observe the change of microstructure of ceramic according to etching methods. Material and methods. Eighty-five cylinder shape ceramic specimens (diameter 5mm, IPS Empress 2 core materials) embeded by acrylic resin were used for this study. The ceramic were specimens divided into sixteen experimental groups with 5 specimens in each group and were etched with phosphoric acid(37%, 65%) & hydrofluoric acid (4%, 9%) according to different etching times(30s, 60s, 120s 180s). All etched ceramic surfaces were examined morphologically using SEM(scanning electron microscopy). Etched surfaces of ceramic specimens were coated with silane (Monobond-S) & adhesive(Heliobond) and built up composite resin using Teflon mold. Accomplished specimens were tested under shear loading until fracture on universal testing machine at a crosshead speed 1mm/min; the maximum load at fracture(kg) was recorded. Shear bond strength data were analyzed with one way ANOVA and Duncan tests.(P<.05) Results. Maximum shear bond strength was $30.07{\pm}2.41(kg)$ when the ceramic was etched with 4% hydrofluoric acid at 120s. No significant difference was found between phosphoric etchant group and control group with respect to shear bond strength. Conclusion. Empress 2 ceramic surface was not etched by phosphoric acid, but etched by hydrofluoric acid.

Antibacterial properties of traditional ceramic glazes containing copper oxide (산화구리를 함유하는 전통 세라믹 유약의 항균특성에 관한 연구)

  • Kim, Ung-Soo;Choi, Jung-Hoon;No, Hyung-Goo;Han, Kyu-Sung;Kim, Jin-Ho;Hwang, Kwang-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.372-378
    • /
    • 2019
  • Traditional ceramic glazes formulated with copper oxide (CuO) exhibited antibacterial properties on Staphylococcus aureus (Gram Positive) and Escherichia coli (Gram Negative). All the ceramic glazes containing CuO showed antibacterial behavior when fired in reducing atmosphere. However, some of copper glazes presented antibacterial behavior and had no antibacterial properties at all when sintered in an oxidizing atmosphere. To elucidate the antibacterial mechanism, ceramic glazes were studied for phase and microstructure analysis, dissolution behavior and surface zeta potential. Metallic copper was precipitated in the glaze layer when sintered in reducing atmosphere. Less than 0.05 ppm of Cu ion was dissolved from glazes. Ca ion was most dissolved among all the samples. Glaze surface was highly negatively charged when CuO was added over 3 wt.% regardless of the sintering atmosphere. The antibacterial behavior of ceramic glazes seemed to be directly related to the dissolution behavior of cations, but the antibacterial behavior of oxidized specimens was not explained by the dissolution behavior. Surface potential of ceramic glazes appeared to play an auxiliary role in antibacterial properties.

A Study on the Thermal Shock Resistance of Sintered Zirconia for Electron Beam Deposition (전자빔 증착을 위한 소결체 지르코니아의 열충격 저항성 연구)

  • Oh, Yoonsuk;Han, Yoonsoo;Chae, Jungmin;Kim, Seongwon;Lee, Sungmin;Kim, Hyungtae;Ahn, Jongkee;Kim, Taehyung;Kim, Donghoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.83-88
    • /
    • 2015
  • Coating materials used in the electron beam (EB) deposition method, which is being studied as one of the fabrication methods of thermal barrier coating, are exposed to high power electron beam at focused area during the EB deposition. Therefore the coating source for EB process is needed to form as ingot with appropriate density and microstructure to sustain their shape and stable melts status during EB deposition. In this study, we tried to find the optimum powder condition for fabrication of ingot of 8 wt% yttria stabilized zirconia which can be used for EB irradiation. It seems that the ingot, which is fabricated through bi-modal type initial powder mixture which consists of tens of micro and nano size particles, was shown better performance than the ingot which is fabricated using monolithic nanoscale powder when exposed to high power EB.

Thermal and Dielectric Properties of LiF-Doped MgO Ceramics (LiF첨가 MgO 세라믹스의 열적·유전적 특성)

  • Kim, Shin;Kim, So-Jung;Nam, Kyung-Jin;Cha, Hansol;Yoon, Sang-Ok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.419-423
    • /
    • 2015
  • Sintering, microstructure, thermal conductivity and microwave dielectric properties of xLiF-(1-x)MgO ceramics (x=0.03~0.10 mol) were investigated. The high density was obtained in the specimens of $x{\geq}0.06$, i.e., 0.04 LiF-0.96 MgO in mol, whereas the amount of 0.03 mol LiF was insufficient to densify. From the result that the contact flattening in the sintered specimen was observed, the densification occurred through the liquid-phase sintering. The specimen of x=0.06 showed the highest room-temperature thermal conductivity. Relative density, thermal conductivity, dielectric constant, and quality factor ($Q{\times}f$) of the specimen for x=0.06 sintered at $900^{\circ}C$ for 4 h were 97.8%, $39.2Wm^{-1}K^{-1}$, 9.45, and 14,671 GHz, respectively.