Browse > Article
http://dx.doi.org/10.4313/JKEM.2015.28.7.419

Thermal and Dielectric Properties of LiF-Doped MgO Ceramics  

Kim, Shin (Hasla Co., Ltd.)
Kim, So-Jung (Department of Electrical and Electronic Engineering, Hanzhong University)
Nam, Kyung-Jin (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University)
Cha, Hansol (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University)
Yoon, Sang-Ok (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.28, no.7, 2015 , pp. 419-423 More about this Journal
Abstract
Sintering, microstructure, thermal conductivity and microwave dielectric properties of xLiF-(1-x)MgO ceramics (x=0.03~0.10 mol) were investigated. The high density was obtained in the specimens of $x{\geq}0.06$, i.e., 0.04 LiF-0.96 MgO in mol, whereas the amount of 0.03 mol LiF was insufficient to densify. From the result that the contact flattening in the sintered specimen was observed, the densification occurred through the liquid-phase sintering. The specimen of x=0.06 showed the highest room-temperature thermal conductivity. Relative density, thermal conductivity, dielectric constant, and quality factor ($Q{\times}f$) of the specimen for x=0.06 sintered at $900^{\circ}C$ for 4 h were 97.8%, $39.2Wm^{-1}K^{-1}$, 9.45, and 14,671 GHz, respectively.
Keywords
MgO; LiF; Liquid phase sintering; Thermal conductivity; Dielectric constant; Quality factor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. F. Wang, J. Zhang, D. W. Luo, F. Gu, D. Y. Tang, Z. L. Dong, G. E. B. Tan, W. X. Que, T. S. Zhang, S. Li, and L. B. Kong, Prog. Solid State Ch., 41, 20 (2013). [DOI: http://dx.doi.org/10.1016/j.progsolidstchem.2012.12.002]   DOI
2 R. Riedel and I. W. Chen, Ceramic Science and Technology, Materials and Properties, 2 (WILEY-VCH, Weinheim, 2010) p. 14.
3 A. J. Slifka, B. J. Filla, and J. M. Phelps, J. Res. Inst. Stand. Technol., 103, 357 (1998). [DOI: http://dx.doi.org/10.6028/jres.103.021]   DOI
4 C. B. Carter and M. G. Norton, Ceramic Materials: Science and Engineering (Spring, New York, 2007) p. 647.
5 K. Itatani, T. Tsujimoto, and A. Kishimoto, J. Eur. Ceram. Soc., 26, 639 (2006). [DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2005.06.011]   DOI
6 R. W. Rice, Am. Ceram. Soc. Bull., 41, 271 (1962).
7 P. E. Hart and J. A. Pask, J. Am. Ceram. Soc., 54, 315 (1971). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1971.tb12299.x]   DOI
8 A. Kan, T. Moriyama, S. Takahashi, and H. Ogawa, Jpn. J. Appl. Phys., 50, 09NF02 (2011). [DOI: http://dx.doi.org/10.1143/JJAP.50.09NF02]   DOI
9 R. M. German, Liquid Phase Sintering (Plenum Press, New York, 1985) p. 101. [DOI: http://dx.doi.org/10.1007/978-1-4899-3599-1_5]
10 R. M. German, P. Suri, and S. J. Park, J. Mater. Sci., 44, 1 (2009). [DOI: http://dx.doi.org/10.1007/s10853-008-3008-0]   DOI
11 G. A. Slack, J. Phys. Chem. Solid., 34, 321 (1973). [DOI: http://dx.doi.org/10.1016/0022-3697(73)90092-9]   DOI
12 A. Kan, H. Ogawa, and T. Moriyama, J. Mater. Res., 27, 915 (2012). [DOI: http://dx.doi.org/10.1557/jmr.2012.314]