• Title/Summary/Keyword: Ceramic microstructure

Search Result 1,359, Processing Time 0.03 seconds

Carbon Fiber Reinforced Ceramics based on Reactive Melt Infiltration Processes

  • Lenz, Franziska;Krenkel, Walter
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.287-294
    • /
    • 2012
  • Ceramic Matrix Composites (CMCs) represent a class of non-brittle refractory materials for harsh and extreme environments in aerospace and other applications. The quasi-ductility of these structural materials depends on the quality of the interface between the matrix and the fiber surface. In this study, a manufacture route is described where in contrast to most other processes no additional fiber coating is used to adjust the fiber/matrix interfaces in order to obtain damage tolerance and fracture toughness. Adapted microstructures of uncoated carbon fiber preforms were developed to permit the rapid infiltration of molten alloys and the subsequent reaction with the carbon matrix. Furthermore, any direct reaction between the melt and fibers was minimized. Using pure silicon as the reactive melt, C/SiC composites were manufactured with an aim of employing the resulting composite for friction applications. This paper describes the formation of the microstructure inside the C/C preform and resulting C/C-SiC composite, in addition to the MAX phases.

A Study on Sources of Pore Formationin Onggi via the Comparison with Porcelains (도자기와의 물성 비교를 통한 옹기의 기공 형성 원인 분석)

  • Kim, Soomin;No, Hyunggoo;Kim, Ungsoo;Cho, Woo Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.1
    • /
    • pp.11-18
    • /
    • 2014
  • Onggi, which is described as a breathing pottery, has strongly influenced the traditional food culture in Korea. In this study Onggi is compared to porcelains including celadon and white porcelain to analyze the sources of pore formation. The differences in starting materials are examined for chemical and mineralogical compositions, particle size and distribution. The gas permeability of the fired samples is correlated to the matrix microstructure. The broad particle size distribution and high iron oxide content of Onggi are revealed as the major cause for the pore formation. Open pores are formed with large particles in the Onggi body while closed pores have a high iron oxide concentration. The Onggi body with increased open pores leads to the high gas permeability.

Trend of Powder Technology for Ceramics (세라믹스 원료 분체기술의 동향)

  • Fukui, Takehisa
    • Ceramist
    • /
    • v.9 no.6
    • /
    • pp.42-48
    • /
    • 2006
  • The structural ceramic, such as $A1_2O_3,\;ZrO_2\;and\;Si_3N_4$ have applied as several parts of precision machines, automotives and instruments for semiconductor. The mechanical properties depended on purity, morphology and microstructure of the ceramic and its fabrication process. High purity and fine starting powder for the structural ceramic was prepared mainly by wet process and powder processing such as milling, mixing, drying and granulating strongly influenced on the fabrication process. Powder processing included powder synthesis technology is essential for ceramic manufacture. Also, the advanced mechanical treat[neat in powder processing to create nano composite powder was developed to improve several properties of ceramic materials. Innovation of powder processing will lead to improve mechanical and functional properties of the ceramics.

  • PDF

A Comparative Study of Nanocrystalline TiAlN Coatings Fabricated by Direct Current and Inductively Coupled Plasma Assisted Magnetron Sputtering (DC 스퍼터법과 유도결합 플라즈마를 이용한 마그네트론 스퍼터링으로 제작된 나노결정질 TiAlN 코팅막의 물성 비교 연구)

  • Chun, Sung-Yong;Kim, Se-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.375-379
    • /
    • 2014
  • Nanocrystalline TiAlN coatings were prepared by reactively sputtering TiAl metal target with $N_2$ gas. This was done using a magnetron sputtering system operated in DC and ICP (inductively coupled plasma) conditions at various power levels. The effect of ICP power (from 0 to 300 W) on the coating microstructure, corrosion and mechanical properties were systematically investigated using FE-SEM, AFM and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of TiAlN coatings. With increasing ICP power, the coating microstructure evolved from the columnar structure typical of DC sputtering processes to a highly dense one. Average grain size of TiAlN coatings decreased from 15.6 to 5.9 nm with increasing ICP power. The maximum nano-hardness (67.9 GPa) was obtained for the coatings deposited at 300 W of ICP power. The smoothest surface morphology (Ra roughness 5.1 nm) was obtained for the TiAlN coating sputtered at 300 W ICP power.

Fabrication of Porous Calcium Phosphate by Using a Pre-Form of Nature Material (자연물의 미세구조를 활용한 다공성 인산칼슘 제조)

  • Lee, Sang-Jin;Lee, Hoon-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.244-248
    • /
    • 2010
  • Porous calcium phosphates were successfully fabricated by using a cuttlefish bone. The cuttlefish bone, which is composed of $CaCO_3$, showed a special porous microstructure containing uniform-sized voids. In this study, the pre-forms infiltrated distilled phosphoric acid were sintered at $1200^{\circ}C$ in an air atmosphere. The porous microstructure of the pre-forms was kept their original pattern after sintering with a synthesis of calcium phosphate. The obtained porous calcium phosphate, sintered at $1200^{\circ}C$ for 3 h at 17% concentration of phosphoric acid, showed uniform open pores of 150 ${\mu}m$ in size and $\beta$-TCP phase in the XRD patterns. Above 16% concentration, CaO phase, derived from the decomposition of $CaCO_3$, decreased gradually in the sintered samples, and the measured Ca/P ratios of the samples prepared from 16% and 18% concentration were 1.67 and 1.43, which are close to stoichiometric HA (1.66) and $\beta$-TCP (1.50).

Influence of Granules Characteristics and Compaction Pressure on the Microstructure and Mechanical Properties of Sintered Alumina

  • Cho, Yong-Ick;Chung, Sang-Gwi;Cho, Sung-Yong;Kim, Seung-Jai;Nobuhiro Shinohara;Masataro Okumiya
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.3
    • /
    • pp.212-217
    • /
    • 2001
  • The influence of granules characteristics and compaction pressure on the microstructure and mechanical properties of sintered as a function of slurry dispersion state. The characteristics and the compaction behavior of the spray dried alumina granules considerably affected the microstructure as well as the mechanical properties of the sintered body. In the green bodies formed with granules prepared with a dispersed slurry, the granules with dimple clearly existed and caused pore defects in sintered body. These dimples were clearly present even in the green body prepared at 180 MPa. The pores between the granules were not removed during pressing and sintering, and remained in the sintered body. In contrast, in the granules fabricated from a flocculated slurry, the destroy of granules at the contact points was observed with increasing pressure. Sintered bodies fabricated with fewer defects showed strength increase. For the sample fabricated with flocculated slurry, the pores at the boundaries of granules were small and more irregular shape compared with those of dispersed slurry.

  • PDF

Effects of Excess PbO and Ball-Milling on the Microstructure, Sintering Behavior and Mechanical Properties of PZT Ceramics (과잉 PbO 첨가 및 미분쇄에 의한 PZT 압전세라믹스의 미세구조제어와 소결특성 및 기계적 성질)

  • 전봉관;남효덕;김상태
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.726-734
    • /
    • 1995
  • Pb(Zr0.53Ti0.47)O3 (PZT) ceramics having different microstructures were fabricated at low temperatures using calcined PZT powders with addition of excess PbO powder and/or ball milling. The effects of excess PbO and ball milling time on the microstructure, the sintering characteristic, and the mechanical properties of these ceramics were studied. Fine powders with average particle size of 0.38㎛ could be obtained by ball milling with 2.5 mm Ф zirconia balls for 120 hours. By the addition of 2mol% of excess PbO to these powders, it was possible to obtain well-densitified PZT ceramics at low sintering temperature of 980℃. Densification behavior of PZT was affected by the addition of excess PbO powder, while, grain growth was hardly affected by PbO addition. It was observed that Vicker's hardness decreased and fracture toughness increased with the increasing amount of PbO. At 1mol% excess PbO, it was shown that the minimum values of hardness and maximum fracture toughness were achieved. In addition, with increasing sintering time, the fracture toughness decreased and the hardness increased.

  • PDF

Cathode Microstructure Control and Performance Improvement for Low Temperature Solid Oxide Fuel Cells (저온 고체산화물 연료전지용 공기극 미세구조 제어 및 성능개선)

  • Kang, Jung-Koo;Kim, Jin-Soo;Yoon, Sung-Pil
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.727-732
    • /
    • 2007
  • In order to fabricate a highly performing cathode for low-temperature type solid oxide fuel cells working at below $700^{\circ}C$, electrode microstructure control and electrode polarization measurement were performed with an electronic conductor, $La_{0.8}Sr_{0.2}MnO_3$ (LSM) and a mixed conductor, $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$(LSCF). For both cathode materials, when $Sm_{0.2}Ce_{0.8}O_2$ (SDC) buffer layer was formed between the cathode and yttria-stabilized zirconia (YSZ) electrolyte, interfacial reaction products were effectively prevented at the high temperature of cathode sintering and the electrode polarization was also reduced. Moreover, cathode polarization was greatly reduced by applying the SDC sol-gel coating on the cathode pore surface, which can increase triple phase boundary from the electrolyte interface to the electrode surface. For the LSCF cathode with the SDC buffer layer and modified by the SDC sol-gel coating on the cathode pore surface, the cathode resistance was as low as 0.11 ${\Omega}{\cdot}cm^2$ measured at $700^{\circ}C$ in air atmosphere.

Comparison of the Power Generating Characteristics of KIST- and FZ-Julich SOFCs (KIST와 FZ-Julich SOFC간의 출력성능 비교)

  • Jung, Hwa-Young;Lee, Sang-Cheol;Tietz, Frank;Kim, Hae-Ryoung;Lee, Hae-Weon;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.703-709
    • /
    • 2007
  • We evaluate and compare the power generating characteristics of the anode supported SOFCs which have been fabricated from KIST and FZ-Julich in Germany. The performance and electrochemical property of each unit cell was characterized at the temperature range of $650-850^{\circ}C$ under same operating conditions and its microstructural property was thoroughly investigated via SEM after the performance test. According to the investigation, KIST- and FZJ SOFC showed different power generating characteristics in their temperature dependances due to their different design of electrode microstructure, especially the cathode microstructure. FZJ SOFC showed better performance at high temperature while showed lower performance at lower temperature. From the investigation about the correlation between microstructure and electrochemical property, we found that the superior performance of FZJ SOFC at high temperature was mainly due to its lower cathodic polarization resistance whereas better performance of KIST SOFC at lower temperature was mostly attributed to the lower ohmic resistance.

Effects of Additives on Dielectric Properties and Microstructure of MLCC X7R Composition (첨가물의 형태가 MLCC X7R 조성의 유전 특성 및 미세구조에 미치는 영향)

  • Moon, Hwan;Kim, Min-Kee;Jeon, Hyun-Pyo;Ahn, Jae-Pyoung;Yoon, Jung-Rag;Chung, Tae-Serk
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.644-651
    • /
    • 2003
  • Effects of additives on electrical properties and microstructure of MLCC X7R dielectrics have been investigated. The additives of glass frit or oxide form were added in the same main composition by the different powder processing conditions. As a result of the dielectric property and microstructure analysis, the composition having the glass layer with dopant concentration gradient showed the excellent dielectric properties. The MLCCs were fabricated with the excellent composition and all dielectric properties satisfied the X7R requirements.