• Title/Summary/Keyword: Ceramic microstructure

Search Result 1,359, Processing Time 0.026 seconds

Synthesis of C3S, C2S, C3A Powders using Ultra-fine Calcium Oxide Powder Synthesized from Eggshell and Effect of C3A Content on Hardened Mixed Aggregates (난각으로부터 합성된 초미립 CaO 분말을 이용한 C3S, C2S, C3A 분말 합성 및 혼합 경화체에 미치는 C3A 함량의 영향)

  • Kong, Heon;Kwon, Ki-Beom;Park, Sang-Jin;Noh, Whyo-Sub;Lee, Sang-Jin
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.493-501
    • /
    • 2019
  • In this work, ultra-fine calcium oxide (CaO) powder derived from eggshells is used as the starting material to synthesize mineral trioxide aggregate (MTA). The prepared CaO powder is confirmed to have an average particle size of 500 nm. MTAs are synthesized with three types of fine CaO-based powders, namely, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A). The synthesis behavior of C3S, C2S and C3A with ultra-fine CaO powder and the effects of C3A content and curing time on the properties of MTA are investigated. The characteristics of the synthesized MTA powders are examined by X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM), and a universal testing machine (UTM). The microstructure and compressive strength characteristics of the synthesized MTA powders are strongly dependent on the C3A wt.% and curing time. Furthermore, MTA with 5 wt.% C3A is found to increase the compressive strength and shorten the curing time.

Electrical Properties of $(x)BaTiO_3-(1-x)SrTiO_3$ Ceramic with Variation of $SrTiO_3$ Substitution ($SrTiO_3$ 고용에 따른 $(x)BaTiO_3-(1-x)SrTiO_3$ 세라믹의 전기적 특성)

  • Jang, Dong-Hwan;Ki, Hyun-Chul;Hong, Hyung-Jin;Jung, Woo-Sung;Kim, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.795-797
    • /
    • 1998
  • A $BaTiO_3$, ferroelectric material, was mixed $SrTiO_3$, $(x)BaTiO_3-(1-x)SrTiO_3$($0.7{\leq}x{\leq}1$) ceramic capacitor with stable electrical properties in high voltage was fabricated. And microstructure, electrical property were investigated with $SrTiO_3$ mol ratio. The shrinkage, open porosity, sintering density were predominated at $9BaTiO_3-0.1SrTiO_3$. Increasing $SrTiO_3$ mol ratio, curie temperature was shifted at low temperature and maximum permittivity was increased. Also, $0.9BaTiO_3-0.1SrTiO_3$ was showed stable dielectric properties at $25{\sim}80[^{\circ}C]$. V-I properties of specimen were observed in the temperature range of $21{\sim}143[^{\circ}C]$, were divided into three regions. The region I below 10[kV/cm] was shown Ohmic conduction, the region II from 10 to 30[kV/cm] was explained by the Poole-Frenkel emission theory and the region III above 30[kV/cm] was analysed by the tunneling effect.

  • PDF

Effect of Variation in Particle Size of WC and Co Powder on the Properties of WC-Co Alloys (WC와 Co원료 입자크기 변화에 따른 WC-Co계 초경합금의 특성 변화)

  • Chung, Tai-Joo;Ahn, Sun-Yong;Paek, Yeong-Kyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.171-177
    • /
    • 2005
  • The effect of variation in particle size of WC and Co powder on the properties of WC-Co alloys was investigated. WC and Co powders having different particle sizes were used in the fabrication of $WC-10\;wt\%$Co composites. High hardness and low fracture toughness alloy was obtained with the decrease in WC particle size regardless of Co particle size. It was newly found in this investigation that the initial particle size of Co as well as WC had a great role in the microstructure and properties of WC-Co hard materials. The average grain size and fracture toughness of WC-Co alloys using same WC powder size increased and their hardness decreased with the use of relatively finer Co binder.

Preparation of $MgO-ZrO_2$ Fibers by Sol-Gel Method and Their Characterization (졸-겔법에 의한 $MgO-ZrO_2$ 섬유의 제조와 특성)

  • 황진명;은희태
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1147-1158
    • /
    • 1994
  • From Zr(O-nC3H7)4-H2O-C2H5OH-HNO3 starting solutions, MgO-doped stabilized zirconia fibers with varying content of MgO (10~18 mol%) from different MgO sources were fabricated by sol-gel method. The MgO sources used are magnesium nitrate hexahydrate, magnesium acetate tetrahydrate, and magnesium ethylate. The phase transformation studies of a drawn MgO-ZrO2 fiber were carried out using X-ray diffraction, IR spectroscopy, and Raman spectroscopy. The microstructure, tensile strength, and microporosity of fibers were investigated using SEM, tensile strength test, and microporosimeter. Although various MgO sources such as magnesium nitrate, acetate, and ethylate were used, the crystallization behavior of MgO-ZrO2 fibers at different temperatures could be summarized as follows: CubiclongrightarrowMetastable TetragonallongrightarrowMonocliniclongrightarrowCoexistence of Monoclinic and CubiclongrightarrowCubic(trace of monoclinic). At 150$0^{\circ}C$, the phase transformation of MgO-ZrO2 fibers shows the following change depending on the amount of MgO[Mg(NO3)2.6H2O]: At 10 mol%, both monoclinic and cubic phase coexist, at 12 mol%, monoclinic phase decreases rapidly, and then at 14 mol%, only cubic phase remains. When the MgO-ZrO2 fibers containing 12 mol% magnesium nitrate were heated at 80$0^{\circ}C$ for 1hr, average tensile strength of fibers is 4.0 GPa at diameters of 20 to 30 ${\mu}{\textrm}{m}$. As the heat-treatment temperatures increase to 100$0^{\circ}C$ for 1 hr, tensile strength of MgO-ZrO2 fibers decreases rapidly to 0.7 GPa.

  • PDF

Freeze Casting of Aqueous Alumina/Silicon Carbide Slurries and Fabrication of Layered Composites: (II) Microstructure and Mechanical Properties of Layered Composites (수성 알루미나/탄화규소 슬러리의 동결주조와 층상복합체의 제조: (II) 층상 복합체의 미세구조와 기계적 성질)

  • Yang, Tae-Young;Cho, Yong-Ki;Kim, Young-Woo;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.2
    • /
    • pp.105-111
    • /
    • 2008
  • Symmetric three layer composites have been prepared by freeze casting and then pressureless sintered at $l700-1800^{\circ}C$ in $N_2$ gas atmosphere. The relative sintered density of multilayer composites having microstructural characteristics of later intermediate-stage densification increased with sintering temperature and reached about 95% theoretical value at $1800^{\circ}C$. Although the indentation strength of the multilayer composites was generally reduced with increasing Vickers indentation load up to 294N, the damage resistance of multilayer composites was superior compared to monolithic layer 95AL/5SN material. The three-point bend strength of the layered materials remained at the values 266-298 MPa after indentation with a load of 49N, while that of the monolithic 95AL/5SN material was 219 MPa. The fracture toughness of the multilayer material was $5.4-6.6\;MPa\;m^{1/2}$.

High-Temperature Fracture Strength of a CVD-SiC Coating Layer for TRISO Nuclear Fuel Particles by a Micro-Tensile Test

  • Lee, Hyun Min;Park, Kwi-Il;Park, Ji-Yeon;Kim, Weon-Ju;Kim, Do Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.441-448
    • /
    • 2015
  • Silicon carbide (SiC) coatings for tri-isotropic (TRISO) nuclear fuel particles were fabricated using a chemical vapor deposition (CVD) process onto graphite. A micro-tensile-testing system was developed for the mechanical characterization of SiC coatings at high temperatures. The fracture strength of the SiC coatings was characterized by the developed micro-tensile test in the range of $25^{\circ}C$ to $1000^{\circ}C$. Two types of CVD-SiC films were prepared for the micro-tensile test. SiC-A exhibited a large grain size (0.4 ~ 0.6 m) and the [111] preferred orientation, while SiC-B had a small grain size (0.2 ~ 0.3 mm) and the [220] preferred orientation. Free silicon (Si) was co-deposited onto SiC-B, and stacking faults also existed in the SiC-B structure. The fracture strengths of the CVD-SiC coatings, as measured by the high-temperature micro-tensile test, decreased with the testing temperature. The high-temperature fracture strengths of CVD-SiC coatings were related to the microstructure and defects of the CVD-SiC coatings.

Photoluminescence of Al2O3:xCr2O3 Solid Solution and Application as the Additive for Improving CRI of Red Phosphor (Al2O3:xCr2O3 고용상의 발광특성과 적색형광체의 연색성 향상을 위한 첨가제로의 응용)

  • Chae, Ki-Woong;Cheon, Chae-Il;Kim, Jeong-Seog
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.122-126
    • /
    • 2010
  • In this article photoluminescence of the $Al_2O_3:xCr_2O_3$ solid solutions prepared by solid state reaction method are represented. The effect of $Cr_2O_3$-activator concentration and heat treatment time on the PL characteristics have been discussed in conjunction with microstructure of phosphor samples. The $Al_2O_3:xCr_2O_3$ phosphors show the highest PL intensity at x=0.003 mole when the samples are reacted at $1600^{\circ}C$ for 5 h. The PL emission and absorption spectra show the maximum peaks at 698 nm and at 398 nm respectively. The CIE color coordinate is (x=0.646, y=0.316) at 0.003 mole $Cr_2O_3$, which value is very close to the NTSC coordinate of red color. This characteristic feature of $Al_2O_3:xCr_2O_3$ has been applied for an additive to improve the color characteristic of other red phosphor $LiEuW_2O_8$ which has a relatively poor color purity with an emission peak centered at 615 nm and with a CIE coordinate (x=0.530, y=0.280). The $Al_2O_3:0.003Cr_2O_3$ phosphor has been mixed with the $LiEuW_2O_8$ phosphor powder and the PL characteristics and CIE color coordinates are characterized. The $Al_2O_3:xCr_2O_3$ phosphor was found effective for improving the CRI (color rendering index) of $LiEuW_2O_8$ phosphor.

Microstructure and Mechanical Properties of β-SiAlON Ceramics Fabricated Using Self-Propagating High-Temperature Synthesized β-SiAlON Powder

  • Kim, Min-Sung;Go, Shin-Il;Kim, Jin-Myung;Park, Young-Jo;Kim, Ha-Neul;Ko, Jae-Woong;Yun, Jon-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.292-297
    • /
    • 2017
  • ${\beta}-SiAlON$, based on its high fracture toughness, good strength and low abrasion resistance, has been adopted in several industrial fields such as bearings, turbine blades and non-ferrous metal refractories. In general, ${\beta}-SiAlON$ is fabricated by reactive sintering using expensive $Si_3N_4$ and AlN as starting materials. On the other hand, in this study, a cheaper ${\beta}-SiAlON$ starting powder synthesized by SHS was employed to improve price competitiveness compared to that of the reactive sintering process. ${\beta}-SiAlON$ ceramics with various content of the sintering additive $Y_2O_3$ up to 7 wt% were fabricated by conventional pressureless sintering at $1800^{\circ}C$ for 2 to 8 h under $N_2$ pressure of 0.1 MPa. The specimen with 3 wt% $Y_2O_3$ exhibited the best mechanical properties: hardness of 14 GPa, biaxial strength of 830 MPa, fracture toughness of $5MPa{\cdot}m^{1/2}$ and wear rate of about $3{\times}10^{-6}mm^3/N{\cdot}m$.

(K,Na)NbO3-based Lead-free Piezoelectric Materials: An Encounter with Scanning Probe Microscopy

  • Zhang, Mao-Hua;Thong, Hao Cheng;Lu, Yi Xue;Sun, Wei;Li, Jing-Feng;Wang, Ke
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.261-271
    • /
    • 2017
  • Environment-friendly $(K,Na)NbO_3-based$ (KNN) lead-free piezoelectric materials have been studied extensively in the past decade. Significant progress has been made in this field, manifesting competitive piezoelectric performance with that of lead-based, for specific application scenarios. Further understanding of the relationship between high piezoelectricity and microstructure or more precisely, ferroelectric domain structure, domain wall pinning effect, domain wall conduction and local polarization switching underpins the continuous advancement of piezoelectric properties, with the help of piezoresponse force microscopy (PFM). In this review, we will present the fundamentals of scanning probe microscopy (SPM) and its cardinal derivative in piezoelectric and ferroelectric world, PFM. Some representative operational modes and a variety of recent applications in KNN-based piezoelectric materials are presented. We expect that PFM and its combination with some newly developed technology will continue to provide great insight into piezoelectric materials and structures, and will play a valuable role in promoting the performance to a new level.

Electrochemical Properties of a Zirconia Membrane with a Lanthanum Manganate-Zirconia Composite Electrode and its Oxygen Permeation Characteristics by Applied Currents

  • Park, Ji Young;Jung, Noh Hyun;Jung, Doh Won;Ahn, Sung-Jin;Park, Hee Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.197-204
    • /
    • 2019
  • An electrochemical oxygen permeating membrane (OPM) is fabricated using Zr0.895Sc0.095Ce0.005Gd0.005O2-δ (ScCeGdZ) as the solid electrolyte and aLa0.7Sr0.3MnO3-bScCeGdZ composite (LZab, electrode) as the electrode. The crystal phase of the electrode and the microstructure of the membrane is investigated with X-ray diffraction and scanning electron microscopy. The electrochemical resistance of the membrane is examined using 2-p ac impedance spectroscopy, and LZ55 shows the lowest electrode resistance among LZ82, LZ55 and LZ37. The oxygen permeation is studied with an oxygen permeation cell with a zirconia oxygen sensor. The oxygen flux of the OPM with LZ55 is nearly consistent with the theoretical value calculated from Faraday's Law below a critical current. However, it becomes saturated above the critical current due to the limit of the oxygen ionic conduction of the OPM. The OPM with LZ55 has a very high oxygen permeation flux of ~ 3.5 × 10-6 mol/㎠s in I = 1.4 A/㎠.