• Title/Summary/Keyword: Ceramic fracture

Search Result 832, Processing Time 0.026 seconds

Effect of Compaction Methods on the Microstructures and Mechanical Properties of α-Alumina (α-알루미나의 미세구조 및 기계적 성질에 미치는 성형방법의 영향)

  • Baek, Jeong Hyun;Lee, Sung gap;Chun, Myoung Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.333-340
    • /
    • 2019
  • The effects of compaction methods on the sintering density, microstructures, and mechanical properties were investigated in ${\alpha}-alumina$ ceramics. ${\alpha}-Alumina$ powders were granulated with a 10% aqueous solution of polyvinyl alcohol (PVA). Uniaxially pressed (UAP) and cold isostatic-pressed (CIP) samples were prepared by pressing uniaxially at a pressure of 1 ton for 1 min, and isostatically at 200 MPa for 15 min, respectively. Subsequently, both types of samples were sintered at $1,200^{\circ}C$, $1,300^{\circ}C$, $1,400^{\circ}C$, $1,450^{\circ}C$, $1,500^{\circ}C$, $1,550^{\circ}C$, and $1,600^{\circ}C$ at a rate of $5^{\circ}C/min$ for 2 h. The CIP samples were better than the UAP samples for all properties measured, such as the sintering density, Vicker's hardness, and toughness. The CIP sample sintered at $1,400^{\circ}C$ showed the maximum Vicker's hardness and toughness; this may be attributed to the competing effects of a decrease in porosity and the growth of grains with increasing sintering temperature.

Stress Distribution Study along Shear Test Specimen Shape for Bonding Strength Verification between Glass and Metal (금속-유리 간 접착강도 검증을 위한 전단시험 시편형상에 따른 응력분포 연구)

  • Kim, Hye-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.455-463
    • /
    • 2022
  • As the need for R&D for high reliability cameras, such as satellite cameras, increases, the reliability of the bonding strength properties between an opto-mechanical structure and an optical component has been secured through specimen tests. However, the widely used specimen shape is not suitable for the application of glass and glass-ceramic material, which is fragile, making it difficult to obtain accurate bonding properties due to stress concentration in glass parts before reaching the bonding strength limit. In this study, the stress distribution characteristics in the shear test condition for various specimen shapes were studied analytically, based on the test results of the glass material's own fracture. Through this, the shape characteristics capable of relieving the stress concentration of the glass part were derived, and the range of the bonding shear strength verifiable by the specimen test was improved.

Effect of Adding Graphene/Carbon Nanotubes (FCN) on the Mechanical Properties of Polyamide-Nylon 6 (그래핀/탄소나노튜브(FCN) 첨가에 따른 Polyamide-Nylon 6의 기계적 특성에 미치는 영향)

  • Seung-Jun Yeo;Hae-Reum Shin;Woo-Seung Noh;Man-Tae Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1297-1303
    • /
    • 2023
  • Research on enhancing the mechanical strength, lightweight properties, electrical conductivity, and thermal conductivity of composite materials by incorporating nano-materials is actively underway. Thermoplastic resins can change their form under heat, making them highly processable and recyclable. In this study, Polyamide-Nylon 6 (PA6), a thermoplastic resin, was utilized, and as reinforcing agents, fused carbon nano-materials (FCN) formed by structurally combining Carbon Nanotube(CNT) and Graphene were employed. Nano-materials often face challenges related to cohesion and dispersion. To address this issue, Silane functional groups were introduced to enhance the dispersion of FCN in PA6. The manufacturing conditions for the composite materials involved determining the use of a dispersant and varying FCN content at 0.05 wt%, 0.1 wt%, and 0.2 wt%. Tensile strength measurements were conducted, and FE-SEM analysis was performed on fracture surfaces. As a result of the tensile strength test, it was confirmed that compared to pure PA6, the strength of the polymer composite with a content of 0.05 wt% was improved by about 60%, for 0.1 wt%, about 65%, and for 0.2 wt%, the strength was improved by 50%. Also, when compared according to the content of FCN, the best strength value was shown when 0.1 wt% was added. The elastic modulus also showed an improvement of about 15% in the case of surface treatment compared to the case without surface treatment, and an improvement of about 70% compared to pure PA6. Through FE-SEM, it was confirmed that the matrix material and silane-modified nanomaterial improved the dispersibility and bonding strength of the interface, helping to support the load evenly and enabling effective stress transfer.

Analysis of stress and stress intensity factor in bonded dissimilar materials by boundary element method (경계요소법을 이용한 이종재료 접착.접합재의 응력 및 응력세기계수 해석)

  • Yi, W.;Chung, N.Y.;Yu, Y.C.;Jeong, E.S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1357-1363
    • /
    • 1997
  • Currently it is increasing to use th bonded dissimilar materials in the various field of advanced engineering such as the highly rigid and lighter vehicle, plastic molding LSI package and metal/ceramic bonded joint. In spite of such a wide application of the bonded dissimilar materials, the evaluation method of the bonding strength has not been established yet. Therefore in this paper we analyze the interface crack problem by introducing fracture mechanics parameters as the basic research about estimating of the strength of adhesive joints. The variation of stress intensity factor according to the elastic modulus of adherend and thickness of bonded layer are investigated. Numerical results are based on the results of boundary element analysis of four different type butt joints subjected to uniaxial tension loading.

Estimation of Interfacial Adhesion through the Micromechanical Analysis of Failure Mechanisms in DLC Film

  • Jeong, Jeung-Hyun;Park, Hae-Seok;Ahn, Jeong-Hoon;Dongil Kwon
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.73-81
    • /
    • 1997
  • In this paper, it is intended to present more reproducible and quantitative method for adhesion assemssement. In scratch test, micromechanical analysis on the stress state beneath the indenter was carried out considering the additional blister field. The interface adhesion was quantified as work of adhesion through Griffith energy approach on the basis of the analyzed stress state. The work of adhesion for DLC film/WC-Co substrate calculated through the proposed analysis shows the identical value regardless of distinctly different critical loads measured with the change of film thickness and scratching speed. On the other hand, uniaxial loading was imposed on DCL film/Al substrate, developing the transverse film cracks perpendicular to loading direction. Since this film cracking behavior depends on the relative magnitude of adhesion strength to film fracture strength, the quantification of adhesion strength was given a trial through the micromechanical analysis of adhesion-dependence of film cracking patterns. The interface shear strength can be quantified from the measurement of strain $\varepsilon$s and crack spacing $\lambda$ at the cessation of film cracking.

  • PDF

Study on Brazing Properties of Metal/Ceramic Joints (금속/세라믹 결합부의 브레이징 특성에 관한 연구)

  • Lim Jae Kyoo;Seo Do Won;Kim Hyo Jin;Hoa Vu Cong
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.109-111
    • /
    • 2004
  • 20 vol.$\%$ SiC를 포함한 두 층간의 $Si_{3}N_{4}/SiC$ 나노 복합재료는$\alpha$ $-Si_3N_4$,13 nm 크기의 나노탄소 분말 그리고 $5\;wt$\%\;Y_2O_3$의 분말로 두 단계 소결을 통하여 제작된다. $Si_3N_4$ 입계 사이의 결합은 소결 후 변하지 않고 남은 compact와 $51\~62\%$의 기공으로 얻어진 표면적 사이의 반응에 의해 생성된다. 이 연구에서는 Ti 합금을 SiC 층에 브레이징을 이용하여 제작하고 기계적 특성을 연구하였다. 다양한 변형율과 결합물의 강도, 변형율 증가에 따른 층간 변화를 연구하였다. 층간 파괴 형태는 금속과 브레이징 합금 사이의 파괴, 세라믹과 브레이징 합금 사이의 파괴, 그리고 세라믹 내부에서의 파괴를 보였다.

  • PDF

Properties of the $\beta$-SiC-$ZrB_2$ Composites with $Al_{2}O_{3}+Y_{2}O_{3}$ additives ($Al_{2}O_{3}+Y_{2}O_{3}$를 첨가한 $\beta$-SiC-$ZrB_2$ 복합체의 특성)

  • Shin, Yong-Deok;Ju, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.853-855
    • /
    • 1998
  • The electrical resistivity and mechanical properties of the hot-pressed and annealed ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_{2}O_{3}+Y_{2}O_{3}$(6:4wt%). In this microstructures. no reactions were observed between $\beta$-SiC and $ZrB_2$, and the relative density is over 97.6% of the theoretical density. Phase analysis of composites by XRD revealed mostly of a $\alpha$-SiC(6H, 4H), $ZrB_2$ and weakly $\beta$-SiC(15R) phase. The fracture toughness decreased with increased $Al_{2}O_{3}+Y_{2}O_{3}$ contents and showed the highest for composite added with 4wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives. The electrical resistivity increased with increased $Al_{2}O_{3}+Y_{2}O_{3}$ contents because of the increasing tendency of pore formation according to amount of liquid forming additives $Al_{2}O_{3}+Y_{2}O_{3}$. The electrical resistivity of composites is all positive temperature coefficient resistance(PTCR) against temperature up to $700^{\circ}C$.

  • PDF

Effect of Sintering Temperature on Properties of $\beta$-SiC-$ZrB_2$ Composites Manufactured by Pressureless Sintering (상압소결법에 의해 제조한 $\beta$-SiC-$ZrB_2$ 복합체의 특성에 미치는 소결온도의 영향)

  • Ju, Jin-Young;Shin, Yong-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1436-1438
    • /
    • 2001
  • The $\beta$-SiC + $ZrB_2$ ceramic electroconductive composites were pressureless-sintered and annealed by adding 12wt% $Al_2O_3$ + $Y_2O_3$ (6 : 4wt%) powder as a function of sintering temperature. The relative density showed the highest value of 81.1% at 1900$^{\circ}C$ sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), $TiB_2$, $Al_5Y_2O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest value of 230 MPa for composites sintered at 1900$^{\circ}C$. The vicker's hardness and the fracture toughness showed the highest value of increased with increasing sintering temperature and showed the highest of 9.88 GPa and 6.05 $MPa{\cdot}m^{1/2}$ at 1900$^{\circ}C$. The electrical resistivity was measured by the Pauw method from 25$^{\circ}C$ to 700$^{\circ}C$. The electrical resistivity of the composites showed the PTCR (Positive Temperature Coefficient Resistivity).

  • PDF

Microstructure, Mechanical and Wear Properties of Hot-pressed $Si_3N_4-TiC$ Composites

  • Hyun Jin Kim;Soo Whon Lee;Tadachika Nakayama;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.317-323
    • /
    • 1999
  • Si3N4-TiC composites have been known as electrically conductive ceramics. $Si_3N_4-TiC$ composites with 2 wt% $Al_2O_3$ and 4 wt% $Y_2O_3$ were hot pressed in $N_2$ environment. The mechanical properties including hardness, fracture toughness, and flexural strength and tribological properties were investigated as a function of TiC content. $Si_3N_4-40$ vol% TiC composite was hot pressed at $1,750^{\circ}C$, $1,800^{\circ}C$, and $1,850^{\circ}C$ for 1, 3 and 5 hours in $N_2$ gas. Mechanical and tribolgical properties depended on microstructures, which were controlled by hte TiC content, hot press temperature, and hot press holding time. However, mechanical properties and tribological behaviors were degraded by the chemical reaction between TiC and N. The chemically reacted products such as TiCN, SiC, and $SiO_2$ were detered by the X-ray diffraction analysis.

  • PDF

Hydrothermal Stability of (Y, Nb)-TZP/$Al_2O_3$ Composites

  • Lee, Deuk-Yong;Kim, Dae-Joon;Lee, Seung-Jae
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.371-374
    • /
    • 1999
  • Y2O3 and Nb2O5 co-doped tetragonal zirconia polycrystals((Y, Nb)-TZP) containing 10 to 30 vol% $Al_2O_3$ were prepared and hydrothermal stability of the composites was evaluated after aging for 5 h at the temperature range of $150^{\circ}C$ $250^{\circ}C$ under 4 MPa $H_2O$ vapor pressure in an autoclave. The (Y, Nb)-TZP/Al2O3 composites showed excellent phase stability under the hydrothermal conditions, as compared with the 3Y-TZP/$Al_2O_3$ composites, due to the combined effects of the Y-Nb ordering in the $t-ZrO_2$ lattice, the reduction of oxygen vacancy concentration, and the $Al_2O_3$ addition. The strength and fracture toughness of the (Y, Nb)-TZP/$Al_2O_3$ composite, containing 20 vol% of 2.8 $Al_2O_3$ particles, were 700 MPa and 8.1 MP.$am^{1/2}$, respectively.

  • PDF