• Title/Summary/Keyword: Ceramic deposition

Search Result 735, Processing Time 0.025 seconds

Characterization of Nitrogen-Doped $TiO_2$ Thin Films Prepared by Metalorganic Chemical Vapor Deposition (유기금속 화학 기상증착법으로 실리콘 기판위에 증착된 질소치환 $TiO_2$ 박막의 특성분석)

  • 이동헌;조용수;이월인;이전국;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1577-1587
    • /
    • 1994
  • TiO2 thin films with the substitution of oxygen with nitrogen were deposited on silicon substrate by metalorganic chemical vapor deposition (MOCVD) using Ti(OCH(CH3)2)4 (titanium tetraisopropoxide, TTIP) and N2O as source materials. X-ray diffraction (XRD) results indicated that the crystal structure of the deposited thin films was anatase TiO2 with only (101) plane observed at the deposition temperatures of 36$0^{\circ}C$ and 38$0^{\circ}C$, and with (101) and (200) plane at above 40$0^{\circ}C$. Raman spectroscopic results indicated that the crystal structure was anatase TiO2 in accordance with the XRD results without any rutile, fcc TiN, or hcp TiN structure. No fundamental difference was observed with temperature increase, but the peak intensity at 194.5 cm-1 increased with strong intensity at 143.0 cm-1 for all samples. The crystalline size of the films varied from 49.2 nm to 63.9 nm with increasing temperature as determined by slow-scan XRD experiments. The refractive index of the films increased from 2.40 to 2.55 as temperature increased. X-ray photoelectron spectroscopy (XPS) study showed only Ti 2s, Ti 2p, C 1s, O 1s and O 2s peaks at the surface of the film. The composition of the surface was estimated to be TiO1.98 from the quatitative analysis. In the bulk of the film Ti 2s, Ti 2p, O 1s, O 2s, N 1s and N 2s were detected, and Ti-N bonding was observed due to the substitution of oxygen with nitrogen. A satellite structure was observed in the Ti 2p due to the Ti-N bonding, and the composition of titanium nitride was determined to be about TiN1.0 from the position of the binding energy of Ti-N 2p3/2 and the quatitative analysis. The spectrum of Ti 2p energy level could be the sum of a 4, 5, or 6 Gaussian curve reconstruction, and the case of the sum of the 6 Gaussian curve reconstruction was physically most meaningful. From the results of Auger electron spectroscopy (AES), it was known that the composition was not varied significantly throughout the whole thickness of the film, and silicon oxide was not observed at the interface between the film and the substrate. The composition of the film was possible (TiO2)1-x.(TiN)x or TiO2-2xNx and in this experimental condition x was found to be about 0.21-0.16.

  • PDF

Study on Low-Temperature Solid Oxide Fuel Cells Using Y-Doped BaZrO3 (Y-doped BaZrO3을 이용한 저온형 박막 연료전지 연구)

  • Chang, Ik-Whang;Ji, Sang-Hoon;Paek, Jun-Yeol;Lee, Yoon-Ho;Park, Tae-Hyun;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.931-935
    • /
    • 2012
  • In this study, we fabricate and investigate low-temperature solid oxide fuel cells with a ceramic substrate/porous metal/ceramic/porous metal structure. To realize low-temperature operation in solid oxide fuel cells, the membrane should be fabricated to have a thickness of the order of a few hundreds nanometers to minimize IR loss. Yttrium-doped barium zirconate (BYZ), a proton conductor, was used as the electrolyte. We deposited a 350-nm-thick Pt (anode) layer on a porous substrate by sputter deposition. We also deposited a 1-${\mu}m$-thick BYZ layer on the Pt anode using pulsed laser deposition (PLD). Finally, we deposited a 200-nm-thick Pt (cathode) layer on the BYZ electrolyte by sputter deposition. The open circuit voltage (OCV) is 0.806 V, and the maximum power density is 11.9 mW/$cm^2$ at $350^{\circ}C$. Even though a fully dense electrolyte is deposited via PLD, a cross-sectional transmission electron microscopy (TEM) image reveals many voids and defects.

Effect of Film Thickness on the Photocatalytic Performance of TiO2 Film Fabricated by Room Temperature Powder Spray in Vacuum Process (상온 진공 분말 분사공정에 의해 제조된 TiO2 광촉매 막의 두께변화에 따른 광촉매 특성)

  • Kim, Kun-Young;Ryu, Jung-Ho;Hahn, Byung-Dong;Choi, Jong-Jin;Yoon, Woon-Ha;Lee, Byoung-Kuk;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.839-844
    • /
    • 2008
  • $TiO_2$ is an environment-friendly semiconducting material, and it has photocatalytic and hydrophilic effect. There are a lot of reports on the photocatalytic characteristics of $TiO_2$, such as organic pollutants resolving, anti-bacterial, and self-purification material. In this paper, $TiO_2$ micron-sized powders were deposited on the glass by room temperature powder spray in vacuum process, so called aerosol deposition (AD), and nano-grained $TiO_2$ photocatalytic thin films were fabricated. The thickness of the films were controlled by changing the number of deposition cycle. Morphologies and characteristics of the AD-$TiO_2$ thin films were examined by SEM, TEM, XRD, and UV-Visible Spectrophotometer. As the thickness of $TiO_2$ films increased, surface roughness increased. By this increment, the reaction area between film and pollutant was enlarged, resulting in better photocatalytic property.

Effects of the Composition on the Consolidation Temperature and Refractive Index of the Glass Thin Film Fabricated by Aerosol Flame Deposition Method in $\textrm{SiO}_2$-$\textrm{B}_2\textrm{O}_3$-CaO-$\textrm{P}_2\textrm{O}_5$ System ($\textrm{SiO}_2$-$\textrm{B}_2\textrm{O}_3$-CaO-$\textrm{P}_2\textrm{O}_5$계에서 조성이 Aerosol Flame Deposition법에 의해 제조된 유리박막의 열처리 온도와 굴절률에 미치는 영향)

  • Lee, Jeong-U;Jeong, Hyeong-Gon;Jeong, Seok-Jong;Lee, Hyeong-Jong;Mun, Jong-Ha
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.478-483
    • /
    • 1999
  • The effects of the composition on the consolidation temperature and refractive index of the glass thin film fabricated by aerosol flame deposition method in SiO$_2$-B$_2$O$_3$-CaO-P$_2$O\ulcorner system were investigated. When the amount of CaO was constant in SiO$_2$-B$_2$O$_3$-CaO system the consolidation temperature of glass thin film decreased with increasing the amount of B$_2$O$_3$. Also, when the amount of SiO$_2$ and B$_2$O$_3$ was constant the consolidation temperature of glass thin film increased with increasing the amount of CaO. P$_2$O\ulcorner was added to 72.5SiO$_2$-25B$_2$O$_3$-2.5CaO in order to decrease its consolidation temperature. As the amount of P$_2$O\ulcorner increased its consolidation temperature decreased and the refractive index linearly increased from 1.4649 to 1.4684. When the amount of CaO and P$_2$O\ulcorner was constant in SiO$_2$-B$_2$O$_3$-CaO-P$_2$O\ulcorner system the consolidation temperature of glass thin film decreased with increasing the ratio of SiO$_2$/B$_2$O$_3$.

  • PDF

Nonhomogeneity of the Electrical Properties with Deposition Position in an ITO Thin Film Deposited under a Given R.F. Magnetron Sputtering Condition (동일 증착 조건의 스퍼터링에 의해서 제작된 Indium Tin 산화물 박막의 증착위치에 따른 전기적 특성의 불균질성)

  • 유동주;최시경
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.973-979
    • /
    • 2001
  • Tin-doped indium oxide (ITO) thin films were deposited using r.f. magnetron reactive sputtering and the electrical properties, such as the resistivity, carrier concentration and mobility, were investigated as a function of the sample position under a given magnetron sputtering condition. The nonhomogeneity of the electrical properties with the sample position was observed under a given magnetron sputtering condition. The resistivity of ITO thin film on the substrate which corresponded to the center of the target had a minimum value, 2∼4$\times$10$\^$-4/$\Omega$$.$cm, and it increased symmetrically when the substrate deviated from the center. The density measurement result also showed that ITO thin film deposited at the center has a maximum density of 7.0g/cm$^3$, which was a relative density of about 97%, and the density decreased symmetrically as the substrate deviated from the center. The nonhomogeneity of electrical properties with the deposition position could be explained with the incidence angle of the source beam alpha, which is related with an atomic self-shadowing effect. It was confirmed experimentally that the density in film affect both the carrier mobility and the conductivity. In the case where the density of ITO thin film is 7.0g/cm$^3$, the magnitude of the mean free path was identical with that of the grain size(the diameter of column). However, in the other cases, the mean free path was smaller than the grain size. These results showed that the scattering of the free electrons at the grain boundary is the major factor for the electrical conduction in ITO thin films having a high density, and there exists other scattering sources such as vacancies, holes, or pores in ITO thin films having a low density.ing a low density.

  • PDF

Influence of Winding Patterns and Infiltration Parameters on Chemical Vapor Infiltration Behaviors of SiCf/SiC Composites (SiCf/SiC 복합체의 화학기상침착 거동에 미치는 권선 구조와 침착 변수의 영향)

  • Kim, Daejong;Ko, Myoungjin;Lee, Hyeon-Geun;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.453-458
    • /
    • 2014
  • SiC and its composites have been considered for use as nuclear fuel cladding materials of pressurized light water reactors. In this study, a $SiC_f$/SiC composite as a constituent layer of SiC triplex fuel cladding was fabricated using a chemical vapor infiltration (CVI) process in which tubular SiC fiber preforms were prepared using a filament winding method. To enhance the matrix density of the composite layer, winding patterns, deposition temperature, and gas input ratio were controlled. Fiber arrangement and porosity were the main parameters influencing densification behaviors. Final density of the composites decreased as the SiC fiber volume fraction increased. The CVI process was optimized to densify the tubular preforms with high fiber volume fraction at a high $H_2$/MTS ratio of 20 at $1000^{\circ}C$; in this process, surface canning of the composites was effectively retarded.

Investigation of Eco-friendly Electroless Copper Coating by Sodium-phosphinate

  • Rha, Sa-Kyun;Lee, Youn-Seoung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.264-268
    • /
    • 2015
  • Cu films were plated in an eco-friendly electroless bath (No-Formaldehyde) on Ni/screen printed Ag pattern/PET substrate. For electroless Cu plating, we used sodium-phosphinate ($NaH_2PO_2{\cdot}H_2O$) as reducing agent instead of Formaldehyde. All processes were carried out in electroless solution of pH 7 to minimize damage to the PET substrate. According to the increase of sodium-phosphinate, the deposition rate, the granule size, and rms roughness of the electroless Cu film increased and the Ni content also increased. The electroless Cu films plated using 0.280 M and 0.575 M solutions of sodium-phosphinate were made with Cu of 94 at.% and 82 at.%, respectively, with Ni and a small amount P. All electroless Cu plated films had typical FCC crystal structures, although the amount of co-deposited Ni changed according to the variation of the sodium-phosphinate contents. From these results, we concluded that a formation of higher purity Cu film without surface damage to the PET is possible by use of sodium-phosphinate at pH 7.

Properties of IZTO Thin Films on Glass with Different Thickness of SiO2 Buffer Layer

  • Park, Jong-Chan;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.290-293
    • /
    • 2015
  • The properties of the IZTO thin films on the glass were studied with a variation of the $SiO_2$ buffer layer thickness. $SiO_2$ buffer layers were deposited by plasma-enhanced chemical vapor deposition (PECVD) on the glass, and the In-Zn-Tin-Oxide (IZTO) thin films were deposited on the buffer layer by RF magnetron sputtering. All the IZTO thin films with the $SiO_2$ buffer layer are shown to be amorphous. Optimum $SiO_2$ buffer layer thickness was obtained through analyzing the structural, morphological, electrical, and optical properties of the IZTO thin films. As a result, the IZTO surface roughness is 0.273 nm with a sheet resistance of $25.32{\Omega}/sq$ and the average transmittance is 82.51% in the visible region, at a $SiO_2$ buffer layer thickness of 40 nm. The result indicates that the uniformity of surface and the properties of the IZTO thin film on the glass were improved by employing the $SiO_2$ buffer layer and the IZTO thin film can be applied well to the transparent conductive oxide for display devices.

Direct Growth of Graphene at Low Temperature for Future Device Applications

  • Kim, Bum Jun;Nasir, Tuqeer;Choi, Jae-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.203-223
    • /
    • 2018
  • The development of two-dimensional graphene layers has recently attracted considerable attention because of its tremendous application in various research fields. Semi-metal materials have received significant attention because of their excellent biocompatibility as well as distinct physical, chemical, and mechanical properties. Taking into account the technical importance of graphene in various fields, such as complementary metal-oxide-semiconductor technology, energy-harvesting and -storage devices, biotechnology, electronics, light-emitting diodes, and wearable and flexible applications, it is considered to be a multifunctional component. In this regard, material scientists and researchers have primarily focused on two typical problems: i) direct growth and ii) low-temperature growth of graphene. In this review, we have considered only cold growth of graphene. The review is divided into five sections. Sections 1 and 2 explain the typical characteristics of graphene with a short history and the growth methods adopted, respectively. Graphene's direct growth at low temperatures on a required substrate with a well-established application is then precisely discussed in Sections 3 and 4. Finally, a summary of the review along with future challenges is described in Section 5.

High-Transmittance Films Coated from Silica Colloidal Nano-Particles (II) (실리카 콜로이드 나노입자를 이용한 반사 방지막의 제조 (II))

  • Hwang, Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.399-404
    • /
    • 2005
  • Anti-reflection film was coated by using spherical silica nano colloidal particles and fumed silica particles. Silica colloid sol was reserved between two inclined slide glasses by capillary force, and particles were stacked to form a film onto the substrate as the upper glass was sliding. The deposition processes were studied to enhance the wavelength dependency of the light transmittance and to control the effective refractive index of the film. Both of the spherical and fumed silica particles showed an enhancement of $4.0-4.4\%$ in light transmittance by one step coating. The dependence of the transmittance on wavelength was largely improved at the longer wavelength by partial coating of fumed particles on the film of spherical particles. The effective refractive index of the film was controlled by removing latex particles that were co-deposited with silica particles. Using this process the light reflectance from one side of the glass substrate could be reduced from $4.2\%$ to $0.6\%$ although zero reflectance was not achieved due to the agglomeration of the latex particles.