• 제목/요약/키워드: Ceramic deposition

검색결과 735건 처리시간 0.031초

RF Power에 따른 Amorphous-InGaZnO 박막의 특성 변화 (The Characteristic Changes of Amorphous-InGaZnO Thin Film according to RF Power)

  • 김상훈;박용헌;김홍배
    • 한국전기전자재료학회논문지
    • /
    • 제23권4호
    • /
    • pp.293-297
    • /
    • 2010
  • We have studied the optical and electrical properties of a-IGZO thin films on the n-type semiconductor fabricated by RF magnetron sputtering method. The ceramic target was used in which $In_2O_3$, $Ga_2O_3$ and ZnO powder were mixed with 1:1:2 mol% ratio and furnished. The RF power was set at 25 W, 50 W, 75 W and 100 W as a variable process condition. The transmittance of the films in the visible range was above 80%, and it was 92% in the case of 25 W power. AFM analysis showed that the roughness increased as increasing RF power, and XRD showed amorphous structure of the films without any peak. The films are electrically characterized by high mobility above 10 $cm^2/V{\cdot}s$ at low RF power, high carrier concentration and low resistivity. It is required to study further finding the optimal process condition such as lowering the RF power, prolonging the deposition ratio and qualification analysis.

Formation of hydrophilic polymer films by DC-plasma of monomer and reactive gases

  • Kim, Ki-Hwan;Park, Sung-Chang;doo-Jin choi;Jung, Hyung-Jin;Koh, Seok-Keun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.161-161
    • /
    • 1999
  • In the field of material science, the interests and efforts to modify the surface of materials in agreement with the need of usage have been extensively increasing. he modification to improve the wettability of surface is very important is terms of adhesion, printing, etc. It is very difficult to modify metal surface into hydrophilic one. therefore, surfactant coating has been generally used in many cases. However, surfactant has disadvantages such as environmental problem, soluble in water. in this study, hydrophilic polymer films as alternative of surfactant were deposited on metal substrate by DC plasma polymerization. Hydrophilic polymer films deposited by DC plasma show many merits such as good wettability, stone adhesion to substrate, high resistance to most chemicals. Monomer gas and reactive gas were used as source plasma polymerization. Plasma polymerized films were fabricated with process parameters of deposition time, ratio of gas mixture, current, pressure, etc. Effects of these variables on wettability of plasma polymer films will be discussed. With XPS and FT-IR analyses of plasma polymeric films, the relation between wettability and chemical state of polymer films by DC plasma was investigated.

  • PDF

The Role of Metal Catalyst on Water Permeation and Stability of BaCe0.8Y0.2O3-δ

  • Al, S.;Zhang, G.
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권3호
    • /
    • pp.212-219
    • /
    • 2018
  • Perovskite type ceramic membranes which exhibit dual ion conduction (proton and oxygen ion conduction) can permeate water and can aid solving operational problems such as temperature gradient and carbon deposition associated with a working solid oxide fuel cell. From this point of view, it is crucial to reveal water transport mechanism and especially the nature of the surface sites that is necessary for water incorporation and evolution. $BaCe_{0.8}Y_{0.2}O_{3-{\alpha}}$ (BCY20) was used as a model proton and oxygen ion conducting membrane in this work. Four different catalytically modified membrane configurations were used for the investigations and water flux was measured as a function of temperature. In addition, CO was introduced to the permeate side in order to test the stability of membrane against water and $CO/CO_2$ and post operation analysis of used membranes were carried out. The results revealed that water incorporation occurs on any exposed electrolyte surface. However, the magnitude of water permeation changes depending on which membrane surface is catalytically modified. The platinum increases the water flux on the feed side whilst it decreases the flux on the permeate side. Water flux measurements suggest that platinum can block water permeation on the permeate side by reducing the access to the lattice oxygen in the surface layer.

Study of Al2O3/ZrO2 (5 nm/20nm) Nanolaminate Composite

  • Balakrishnan, G.;Wasy, A.;Ho, Ha Sun;Sudhakara, P.;Bae, S.I.;Song, J.I.
    • Composites Research
    • /
    • 제26권1호
    • /
    • pp.60-65
    • /
    • 2013
  • A nanolaminate consisting of alternate layers of aluminium oxide ($Al_2O_3$) (5 nm) and zirconium oxide ($ZrO_2$) (20 nm) was deposited at an optimized oxygen partial pressure of $3{\times}10^{-2}$ mbar by pulsed laser deposition. The nanolaminate film was analysed using high temperature X-ray diffraction (HTXRD) to study phase transition and thermal expansion behaviour. The surface morphology was investigated using field emission scanning electron microscopy (FE-SEM). High temperature X-ray diffraction indicated the crystallization temperature of tetragonal zirconia in the $Al_2O_3/ZrO_2$ multilayer-film was 873 K. The mean linear thermal expansion coefficient of tetragonal $ZrO_2$ was $4.7{\times}10^{-6}\;K^{-1}$ along a axis, while it was $13.68{\times}10^{-6}\;K{-1}$ along c axis in the temperature range 873-1373 K. The alumina was in amorphous nature. The FESEM studies showed the formation of uniform crystallites of zirconia with dense surface.

Rf-magnetron sputtering 방법으로 Li-Nb-K-O 세라믹 타겟을 사용하여 제작한 $\textrm{LiNbO}_3$박막의 제작 및 전기적 특성 (Fabrication and Electric Properties of $\textrm{LiNbO}_3$ Thin Film by an Rf-magnetron Sputtering Technique Li-Nb-K-O Ceramic Target)

  • 박성근;백민수;배승춘;권성열;김광태;김기완
    • 한국재료학회지
    • /
    • 제9권2호
    • /
    • pp.163-167
    • /
    • 1999
  • LiNbO$_3$films were prepared by an rf-magnetron sputtering technique using sintered target containing potassium. The potassium was included to help to fabricate stoichiometric LiNbO$_3$film. Structural and electrical properties of thin films was investigated as a function of deposition condition. Optimum sputtering conditions were rf power of 100W, working pressure of 1m Torr and substrate temperature of 58$0^{\circ}C$. The thin film was grown to (012) preferred orientation. The dielectric constant of the thin film LiNbo$_3$ fabricated under optimum condition was 55 at 1MHz. Average grain size is about 200$\AA$ and roughness of the film is small enough to apply to optic devices.

  • PDF

적층 세라믹 콘덴서의 내부전극용 니켈 분말의 소결 특성 (Sintering Characteristics of Nickel Powders for Internal Electrode of Multilayer Ceramic Capacitors)

  • 이상근;최은영;이윤복;박성수;박희찬;김광호
    • 한국재료학회지
    • /
    • 제13권12호
    • /
    • pp.779-784
    • /
    • 2003
  • Nickel powders were obtained by various preparation methods, and their sintering characteristics were investigated. Nickel powders made by wet chemical process (WCP) had a higher surface area and more narrow size distribution than that of chemical vapor deposition (CVD) method. Nickel-oxide powders by the WCP method were prepared at $200^{\circ}C$ for 3 hr. The oxidation behaviour of nickel-oxide powder is similar with that of the CVD method. Nickel powders made by the WCP method showed a higher shrinkage in the range of $600^{\circ}C$$900^{\circ}C$ than that of commercial powder made by the CVD method. The similar results were observed on the surface microstructure of sintered bodies by SEM measurements.

A Study on the properties of aluminum nitride films on the Al7075 deposited by pulsed DC reactive magnetron sputtering

  • Kim, Jung-hyo;Cha, Byung-Chul;Lee, Keun-Hak;Park, Won-Wook
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.179-180
    • /
    • 2012
  • Aluminum alloys are widely known as non-ferrous metal with light weight and high strength. Consequently, these materials take center stage in the aircraft and automobile industry. The Al7075 aluminum alloy is based on the Al-Zn-Mg-Cu and one of the strongest wrought aluminum alloys. Aluminum nitride has ten times higher thermal conductivity($319W/m{\cdot}K$) than Al2O3 and also has outstanding electric insulation($1{\times}1014{\Omega}{\cdot}cm$). Furthermore, it has high mechanical property (430 MPa) even though its co-efficient of thermal expansion is less than alumina For these reasons, it has great possibilities to be used for not only the field which needs high strength lightweight but also electronic material field because of its suitability to be applied to the insulator film of PCB or wafer of ceramic with high heat conduction. This paper investigates the mechanical properties and corrosion behavior of aluminum alloy Al7075 deposited with aluminum nitride thin films To improve the surface properties of Al7075 with respect to hardness, and resistance to corrosion, aluminum nitride thin films have been deposited by pulsed DC reactive magnetron sputtering. The pulsed DC power provides arc-free deposition of insulating films.

  • PDF

Frriction and Wear of Siamond-Like Carbon Films Produced by Plasma-Assisted CVD Technique

  • AkihiroTanaka;KazunoriUmeda;KazuyukiMizuhara;Ko, Myoung-Wan;Kim, Seong-Young;Shin, Seung-Yong;Lee, Sang-Hyun
    • The Korean Journal of Ceramics
    • /
    • 제3권3호
    • /
    • pp.182-186
    • /
    • 1997
  • Diamond-like carbon(DLC) films were deposited on silicon substreates by using an RF plasmaassisted CVD apparatus; the effects of deposition conditions such as CH4 gas pressure and substrate bias voltage on DLC film friction and wear were examined in both friction and scratch tests. In friction tests critical loads at which the friction coefficient increases abruptly depend on substrate bias voltages: critical loads deposited at a bias voltage of -100 V exceed those deposited at other bias voltages. Critical loads are correlated with DLC film hydrogen content. Critical DLC film loads in scratch tests depended considerably less than in friction tests. The friction coefficient of DLC films depends on neither substrate bias voltage nor CH4 gas pressure.

  • PDF

Growth Mechanism of Self-Catalytic Ga2O3 Nano-Burr Grown by RF Sputtering

  • 박신영;최광현;강현철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.462-462
    • /
    • 2013
  • Gallium Oxide (Ga2O3) has been widely investigated for the optoelectronic applications due to its wide bandgap and the optical transparency. Recently, with the development of fabrication techniques in nanometer scale semiconductor materials, there have been an increasing number of extensive reports on the synthesis and characterization of Ga2O3 nano-structures such as nano-wires, nanobelts, and nano-dots. In contrast to typical vaporliquid-solid growth mode with metal catalysts to synthesis 1-dimensional nano-wires, there are several difficulties in fabricating the nanostructures by using sputtering techniques. This is attributed to the fact that relatively low growth temperatures and higher growth rate compared with chemical vapor deposition method. In this study, Ga2O3 chestnut burr were synthesized by using radio-frequency magnetron sputtering method. In contrast to typical sputtering method with sintered ceramic target, a Ga2O3 powder (99.99% purity) was used as a sputtering target. Several samples were prepared with varying the growth parameters, especially he growth time and the growth temperature to investigate the growth mechanism. Samples were characterized by using XRD, SEM, and PL measurements. In this presentation, the details of fabrication process and physical properties of Ga2O3 nano chestnut burr will be reported.

  • PDF

수소분리용 Pd-Cu 합금 분리막의 Cu Reflow 영향 (The Effect of Cu Reflow on the Pd-Cu Alloy Membrane Formation for Hydrogen Separation)

  • 문진욱;김동원
    • 한국표면공학회지
    • /
    • 제39권6호
    • /
    • pp.255-262
    • /
    • 2006
  • Pd-Cu alloy membrane for hydrogen separation was fabricated by sputtering and Cu reflow process. At first, the Pd and Cu was continuously deposited by sputtering method on oxidized Si support, the Cu reflow process was followed. Microstructure of the surface and permeability of the membrane was investigated depending on various reflow temperature, time, Pd/cu composition and supports. With respect to our result, Pd-Cu thin film (90 wt.% Pd/10 wt.% Cu) deposited by sputtering process with thickness of $2{\mu}m$ was heat-treated for Cu reflow The voids of the membrane surface were completely filled and the dense crystal surface was formed by Cu reflow behavior at $700^{\circ}C$ for 1 hour. Cu reflow process, which is adopted for our work, could be applied to fabrication of dense Pd-alloy membrane for hydrogen separation regardless of supports. Ceramic or metal support could be easily used for the membrane fabricated by reflow process. The Cu reflow process must result in void-free surface and dense crystalline of Pd-alloy membrane, which is responsible for improved selectivity oi the membrane.