• Title/Summary/Keyword: Ceramic core

Search Result 345, Processing Time 0.021 seconds

Development of Helical Antenna using Microwave ZST Ceramics (마이크로파 ZST 세라믹을 이용한 Helical Antenna 개발)

  • Lee, Jong-Bae;Yook, Young-Jin;Sin, Ho-Yong;Kim, Hyung-Sun;Im, Jong-In
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.208-213
    • /
    • 2008
  • In this study, helical antenna with microwave ZST ceramics was designed using finite element method and developed. Studied parameters are relative dielectric constant of the dielectric core and the width of the conduction metal band of the antenna. As shown in the results, the center frequency of the antenna was decreased as the dielectric constant increased. Also beam width of the antenna increased as both the dielectric constant and the conduction band width increased. Based on the designed optimal shape, the manufactured antenna has the good beam width at center frequency 1.58 GHz.

A STUDY THE SHADE CHANCE OF SEVERAL KINDS OF ALL CERAMIC CROWNS USED FOR METAL DOWEL CORE (금속 다우엘코어에 사용된 수종의 전부도재관의 색조변화에 관한 연구)

  • Hur Sung-Il;Lim Heon-Song;Lim Ju-Hwan;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.5
    • /
    • pp.477-491
    • /
    • 2001
  • The purpose of this study is to compare and analyze the shade changes(${\Delta}E^*$) about $In-Ceram^{(R)}$, $IPS-Empress^{(R)}$, $OPC^{(R)}$ by using of the spectrophotometer arising from inital status and before and after cementation of the resin cement mounted on the metal core. We used a couple of statistics such as 'One- Way ANOVA' and 'Multiple Range Test.' We could be able to verify significantly what is being discussed here up to 95%. The results drawn from our research are as follows : 1. At the time of our experiments regarding the initial shapes of all-ceramic and mounting status of all-ceramic on the metal crown(${\Delta}E^*1$), and a comparison of mounting of all ceramic on the metal crown with all-ceramic cemented on the metal core(${\Delta}E^*2$), at the time of shade change of initial shapes and after we cemented on the metal core. (1) no significant difference among all-ceramics was found. (2) no particular difference was found regarding the $In-Ceram^{(R)}$. (3) a significant difference between the ${\Delta}E^*1$ and ${\Delta}E^*2$ regarding the $IPS-Empress^{(R)}$ was found(P<0.05). (4) a significant difference between the ${\Delta}E^*1$ and ${\Delta}E^*2$ regarding the $OPC^{(R)}$ was found(P<0.05). 2. When we compared the shade changes(${\Delta}E^*$) resulted from before and after the cementation on each of the parts involved of some all-ceramic, we could be able to find shade change increase form incisal third, middle third. and cervical third in that order in $In-Ceram^{(R)}$(spinell), IPS $Empress^{(R)}$, and $OPC^{(R)}$ all. In addition. we could be able to find a significant difference between cervical third and incisal third, middle third. (P<0.05) From what we have just seen, we might conclude that there is a significant shade change difference before and after the cementation with respect to $IPS-Empress^{(R)}$ and $OPC^{(R)}$. In addition, we could also be able to find more shade change difference at the cervical third rather than incisal third and middle third depending on the parts involved.

  • PDF

Effects of coloring procedures on zirconia/veneer ceramics bond strength

  • Tuncel, Ilkin;Ozat, Pelin;Eroglu, Erdal
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.451-455
    • /
    • 2014
  • PURPOSE. The most common failure seen in restorations with a zirconia core is total or layered delamination of the ceramic veneer. In the present study, the shear bond strengths between veneering ceramics and colored zirconia oxide core materials were evaluated. MATERIALS AND METHODS. Zirconia discs ($15{\times}12{\times}1.6mm$) were divided into 11 groups of 12 discs each. Groups were colored according to the Vita Classic scale: A3, B1, C4, D2, and D4. Each group was treated with the recommended shading time for 3 s, or with prolonged shading for 60 s, except for the control group. Samples were veneered with 3 mm thick and 3.5 mm in diameter translucent ceramic and subjected to shear test in a universal testing machine with a crosshead speed of 1 mm/min. One-way analysis of variance (ANOVA) and Tukey's HSD tests were used for comparisons of the groups having the same shading times. A paired t-test was used for groups of the same color (3 s/60 s). RESULTS. Among the 11 groups investigated C4 (3 s) had the highest bond strength with a value of 36.40 MPa, while A3 (3 s) showed the lowest bond strength with a value of 29.47 MPa. CONCLUSION. Coloring procedures can affect zirconia/ceramic bond strength. However, the results also showed that bond strengths of all the investigated groups were clinically acceptable.

Fabrication of Visible-Light Sensitized ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots

  • Kim, Misung;Bang, Jiwon
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.510-514
    • /
    • 2018
  • Colloidal semiconductor quantum dots (QDs), because of the novel optical and electrical properties that stem from their three-dimensional confinement, have attracted great interest for their potential applications in such fields as bio-imaging, display, and opto-electronics. However, many semiconductors that can be exploited for QD applications contain toxic elements. Herein, we synthesized non-toxic ZnTe/ZnSe (core/shell) type-II QDs by pyrolysis method. Because of the unique type-II character of these QDs, their emission can range over an extended wavelength regime, showing photoluminescence (PL) from 450 nm to 580 nm. By optimizing the ZnSe shell growth condition, resulting ZnTe/ZnSe type-II QDs shows PL quantum yield up to ~ 25% with 35 nm PL bandwidth. Using a simple two step cation exchange reaction, we also fabricated ZnTe/ZnSe type-II QDs with absorption extended over the whole visible region. The visible-light sensitized heavy metal free ZnTe/ZnSe type-II QDs can be relevant for opto-electronic applications such as displays, light emitting diodes, and bio-imaging probes.

The Effect of Temperature on the Photoluminescence Properties of the InZnP/ZnSe/ZnS (Core/Multishell) Quantum Dots (온도에 따른 InZnP/ZnSe/ZnS (핵/다중껍질) 양자점의 형광 특성 변화)

  • Son, Min Ji;Jung, Hyunsung;Lee, Younki;Koo, Eunhae;Bang, Jiwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.443-449
    • /
    • 2018
  • We investigated the temperature-dependent photoluminescence spectroscopy of colloidal InZnP/ZnSe/ZnS (core/shell/shell) quantum dots with varying ZnSe and ZnS shell thickness in the 278~363 K temperature range. Temperature-dependent photoluminescence of the InZnP-based quantum dot samples reveal red-shifting of the photoluminescence peaks, thermal quenching of photoluminescence, and broadening of bandwidth with increasing temperature. The degree of band-gap shifting and line broadening as a function of temperature is affected little by shell composition and thickness. However, the thermal quenching of the photoluminescence is strongly dependent on the shell components. The irreversible photoluminescence quenching behavior is dominant for thin-shell-deposited InZnP quantum dots, whereas thick-shelled InZnP quantum dots exhibit superior thermal stability of the photoluminescence intensity.

Shear bond strength of veneering porcelain to zirconia and metal cores

  • Choi, Bu-Kyung;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jai-Bong;Kim, Sung-Hun
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.3
    • /
    • pp.129-135
    • /
    • 2009
  • STATEMENT OF PROBLEM. Zirconia-based restorations have the common technical complication of delamination, or porcelain chipping, from the zirconia core. Thus the shear bond strength between the zirconia core and the veneering porcelain requires investigation in order to facilitate the material's clinical use. PURPOSE. The purpose of this study was to evaluate the bonding strength of the porcelain veneer to the zirconia core and to other various metal alloys (high noble metal alloy and base metal alloy). MATERIAL AND METHODS. 15 rectangular ($4\times4\times9mm$) specimens each of zirconia (Cercon), base metal alloy (Tillite), high noble metal alloy (Degudent H) were fabricated for the shear bond strength test. The veneering porcelain recommended by the manufacturer for each type of material was fired to the core in thickness of 3mm. After firing, the specimens were embedded in the PTFE mold, placed on a mounting jig, and subjected to shear force in a universal testing machine. Load was applied at a crosshead speed of 0.5mm/min until fracture. The average shear strength (MPa) was analyzed with the oneway ANOVA and the Tukey's test ($\alpha$= .05). The fractured specimens were examined using SEM and EDX to determine the failure pattern. RESULTS. The mean shear strength ($\pm\;SD$) in MPa was 25.43 ($\pm\;3.12$) in the zirconia group, 35.87 ($\pm\;4.23$) in the base metal group, 38.00 ($\pm\;5.23$) in the high noble metal group. The ANOVA showed a significant difference among groups, and the Tukey' s test presented a significant difference between the zirconia group and the metal group. Microscopic examination showed that the failure primarily occurred near the interface with the residual veneering porcelain remaining on the core. CONCLUSION. There was a significant difference between the metal ceramic and zirconia ceramic group in shear bond strength. There was no significant difference between the base metal alloy and the high noble metal alloy.

X-ray Photoemission Spectroscopy Study of Cation-Deficient La$_{0.970}$Mn$_{0.970}$O$_3$ System (양이온 결손 La$_{0.970}$Mn$_{0.970}$O$_3$의 X-ray Photoemission Spectroscopy 관측)

  • 정우환
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.50-54
    • /
    • 1999
  • We have measured the x-ray photoemission spectroscopy of cation deficient La0.970Mn0.970O3 as a function of temperature. Detailed results on the chemical shifts and changes in Mn 2p and Lp 3d core levels due to variation of temperature have been obtained. The Mn 2p 3/2 and 1/2 main peaks and La 3d core spectrum shift to lower binding energy levels with increasing temperature. This XPS behavior is correlated with the strength of localization of Mn3+. The Jahn-Teller effect due to Mn3+ besides the conventional random potential effects is likely to localize charge carriers in La-.970Mn0.970O3.

  • PDF

Post-buckling analysis of sandwich FG porous cylindrical shells with a viscoelastic core

  • Foroutan, Kamran;Dai, Liming
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.349-367
    • /
    • 2022
  • In this research, an approach combining a semi-analytical method and an analytical method is presented to investigate the static and dynamic post-buckling behavior of the sandwich functionally graded (FG) porous cylindrical shells exposed to external pressure. The sandwich cylindrical shell considered is composed of a viscoelastic core and two FG porous (FGP) face layers. The viscoelastic core is made of Kelvin-Voigt-type material. The material properties of the FG porous face layer are considered continuous through each face thickness according to a porosity coefficient and a volume fraction index. Two types of sandwich FG porous viscoelastic cylindrical shells named Type A and Type B are considered in the research. Type A shell has the porosity evenly distributed across the thickness direction, and Type B has the porosity unevenly distributes across the thickness direction. The FG face layers are considered in two cases: outside metal surface, inside ceramic surface (OMS-ICS), and inside metal surface, outside ceramic surface (IMS-OCS). According to Donnell shell theory, von-Karman equation, and Galerkin's method, a discretized nonlinear governing equation is derived for analyzing the behavior of the shells. The explicit expressions for static and dynamic critical buckling loading are thus developed. To study the dynamic buckling of the shells, the governing equation is examined via a numerical approach implementing the fourth-order Runge-Kutta method. With a procedure presented by Budiansky-Roth, the critical load for dynamic post-buckling is obtained. The effects of various parameters, such as material and geometrical parameters, on the post-buckling behaviors are investigated.

Numerical analysis of plasma-sprayed ceramic coatings for high-temperature applications

  • St. Doltsinis, Ioannis;Haller, Kai-Uwe;Handel, Rainer
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.679-702
    • /
    • 1996
  • The finite element method is employed in conjunction with micromechanical modelling in order to assess the performance of ceramic thermal barrier coatings applied to structural components. The study comprises the conditions of the deposition of the coating by plasma spraying as well as the thermal cycling of the coated component, and it addresses particularly turbine blades. They are exposed to high temperature changes strongly influencing the behaviour of the core material and inducing damage in the ceramic material by intense straining. A concept of failure analysis is discussed starting from distributed microcracking in the ceramic material, progressing to the formation of macroscopic crack patterns and examining their potential for propagation across the coating. The theory is in good agreement with experimental observations, and may therefore be utilized in proposing improvements for a delayed initiation of failure, thus increasing the lifetime of components with ceramic thermal barrier coatings.