Park, Hyeji;Lee, Sukyung;Jo, Minsang;Park, Sanghyuk;Kwon, Kyungjung;Shobana, M.K.;Choe, Heeman
Journal of the Korean Ceramic Society
/
v.54
no.5
/
pp.438-442
/
2017
This paper reports the facile synthesis of microlamella-structured porous copper (Cu)-oxide-based electrode and its potential application as an advanced anode material for lithium-ion batteries (LIBs). Nanowire-like Cu oxide, which is created by a simple thermal oxidation process, is radially and uniformly formed on the entire surface of Cu foam that has been fabricated using a combination of water-based slurry freezing and sintering (freeze casting). Compared to the Cu foil with a Cu oxide layer grown under the same processing conditions, the Cu foam anode with 63% porosity exhibits over twice as much capacity as the Cu foil (264.2 vs. 131.1 mAh/g at 0.2 C), confirming its potential for use as an anode electrode for LIBs.
Solid Oxide Fuel Cells (SOFC) are of great interest of next generation energy conversion system due to their high energy efficiency and environmental friendliness. The basic SOFC unit consists of anode, cathode and solid electrolyte. Among these components, anode plays the most important role for the oxidation of fuel to generate electricity and also behaves as a substrate of the whole cell. It is normally requested that the anode materials should have the high electrical conductivity and gas permeability to reduce the polarization loss of the cell. In this study, the effect of pore former on the microstructure of anode substrate was investigated and thus on the electrical conductivity and the gas permeability. According to the results, microstructure and electrical conductivity of anode substrate were greatly influenced by the shape of pore former and especially by the anisotrpy of the pore former. The use of anisotropic pore former is supposed to deteriorate the cell performance by which the electrical conduction path is disconnected but also the effective gas diffusion path for the fuel is reduced.
Graphite and carbonaceous materials showed an excellent capability as a negative electrode in Li-ion batteries because Li-ion can be intercalated and de-intercalated reversibly within most carbonaceous materials of layered structure. Also, the electrochemical potential of Li-intercalated carbon anode is almost identical with that of Li metal. In the present study, mesocarbon microbeads(MCMB) were used as anode electrode and its properties of charge/discharge and interfacial reaction with electrolyte were studied by Potentiostat/Galvanostat test, FT-IR analysis, XRD and SEM. The passivation film of solid-state was formed as the interface between electrode and electrolyte as the cell reaction began and, once formed, became thicker with repeated charge/discharge process. Also, the relationship between the passivation film formed at the electrode interface and storage capacity was discussed.
In this study, the reducing agent hydrazine and precipitator NaOH were used with $NiCl_2$ as a starting material in order to compound Ni-based material with spherical nano characteristics; resulting material was used as an anode for SOFC. Synthetic temperature, pH, and solvent amounts were experimentally optimized and the synthesis conditions were confirmed. Also, a 0 ~ 0.15 mole ratio of metal(Co, Fe) was alloyed in order to increase the catalyst activation performance of Ni and finally, spherical nano $Ni_{(1-x)}-M_{(x=0{\sim}0.15)}$(M = Co, Fe) alloy materials were compounded. In order to evaluate the catalyst activation for hydrocarbon fuel, fuel gas(10%/$CH_4$+10%/Air) was added and the responding gas was analyzed with GC(Gas Chromatography). Catalyst activation improvement was confirmed from the 3% hydrogen selectivity and 2.4% methane conversion rate in $Ni_{0.95}-Co_{0.05}$ alloy; those values were 4.4% and 19%, respectively, in $Ni_{0.95}-Fe_{0.05}$ alloy.
Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Park, Tae-Jin;Jung, Sung-Hun;Choi, Byung-Hyun
Journal of the Korean Ceramic Society
/
v.49
no.6
/
pp.659-662
/
2012
Yttrium (Y) and niobium (Nb) doped spherical $Li_4Ti_5O_{12}$ were synthesized to improve the energy density and electrochemical properties of anode material. The synthesized crystal was $Li_4Ti_5O_{12}$, the particle size was less than $1{\mu}m$ and the morphology was spherical and well dispersed. The Y and Nb optimal doping amounts were 1 mol% and 0.5 mol%, respectively. The initial capacity of the dopant discharge and charge capacity were respectively 149mAh/g and 143 mAh/g and were significantly improved compared to the undoped condition at 129 mAh/g. Also, the capacity retention of 0.2 C/5 C was 74% for each was improved to 94% and 89%. It was consequently found that Y and Nb doping into the $Li_4Ti_5O_{12}$ matrix reduces the polarization and resistance of the solid electrolyte interface (SEI) layer during the electrochemical reaction.
Seo, Ha-Na;Lee, Woo-Jin;Hwang, Tae-Sik;Park, Doo-Hyun
Journal of Microbiology and Biotechnology
/
v.19
no.9
/
pp.1019-1027
/
2009
A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99% of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99% similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.
LSGM$(La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_{3-{\delta}})$ is the very promising electrolyte material for lower-temperature operation of SOFCs, especially when realized in anode-supported cells. But it is notorious for reacting with other cell components and resulting in the highly resistive reaction phases detrimental to cell performance. LDC$(La_{0.4}Ce_{0.6}O_{1.8})$, which is known to keep the interfacial stability between LSGM electrolyte and anode, was adopted in the anode-supported cell, and its effect on the interfacial reactivity and electrochemical performance of the cell was investigated. No severe interfacial reaction and corresponding resistive secondary phase was found in the cell with LDC buffer layer, and this is due to its ability to sustain the La chemical potential in LSGM. The cell exhibited the open circuit voltage of 0.64V, the maximum power density of 223 $mW/cm^2$, and the ohmic resistance of $0.17{\Omega}cm^2$ at $700^{\circ}C$. These values were much improved compared with those from the cell without any buffer layer, which implies that formation of the resistive reaction phases in LSGM and then deterioration of the cell performance is resulted mainly from the La diffusion from LSGM electrolyte to anode.
It is well known that the anode substrate of anode-supported type SOFC should have high electrical conductivity and high gas permeability to minimize the polarization loss of the cell performance during operation. In this study, we made anode substrates of SOFC with two different methods, which gave different anode microstructures, especially different pore structures with each other. We performed electrical and microstructural characterization of Ni/YSZ cermet anode via extensive measurements of its electrical conductivity and gas permeability combined with adequate image analysis based on quantitative stereological theory
NiO-YSZ anode-supported single cell was prepared by spin-coating YSZ and LSM slurries as electrolyte and cathode, respectively. Dense YSZ electrolyte film was successfully prepared on the porous NiO-YSZ anode substrate by tuning pre-sintering temperature of NiO-YSZ and co-firing temperature. The thickness of YSZ film was controlled by the solid content of slurry and coating cycles. The experimental conditions affecting on the thickness of YSZ film was discussed. Single cells with the active electrode area ${\sim}0.8\;cm^2$ were prepared by spin-coating the cathode layers of LSM-YSZ mixture and LSM consequently as well. The effects of the pre-sintering temperature and thus the microstructure of NiO-YSZ substrate on the current-voltage characteristics of co-fired cell were investigated.
The spinel material $Li_4Ti_5O_{12}$ has attracted considerable attention as an anode electrode material for many battery applications owing to its light weight and high energy density. However, the real capacity of $Li_4Ti_5O_{12}$ powder as determined by the solid-state method is lower than the ideal capacity. In this study, we investigated the effect of the dopants in M-doped spinel $Ba_xLi_{4-2x}Ti_5O_{12}$(x=0.005, 0.05, 0.1) powders prepared by the solid-state reaction method and used as the anode material in lithiumion batteries. The results confirmed the effect of the Ba and Sr dopants on the powder properties of the spinel $Li_4Ti_5O_{12}$, which exhibited a pure spinel structure without any secondary phase in its XRD pattern. Moreover, the electrochemical properties of the spinel M-LTO materials were investigated using a half cell. The electrochemical data show that cells with anodes made of undoped $Li_4Ti_5O_{12}$ and Ba- and Sr-doped $Li_4Ti_5O_{12}$ have discharge capacities of 97, 130, and 112 mAh/g, respectively, at the first cycle. Moreover, the Ba- and Sr-doped spinel $Li_4Ti_5O_{12}$ demonstrated good properties in the mid-voltage range at 1.55 V, showing stable cyclic voltammogram properties which surpassed those of the same material without Ba or Sr at 1 C after 100 cycles.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.