• Title/Summary/Keyword: Centrifugal Forming Process

Search Result 20, Processing Time 0.026 seconds

Development of Centrifugal Forming Process for HTS Tube Fabrication (고온초전도체 튜브 제조를 위한 원섬 성형 공정 개발)

  • 정승호;장건익
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.98-100
    • /
    • 2002
  • We developed the Centrifugal Forming Process(CFP) for HTS tube fabrication. The self-designed equipment for CFP is devided into 3 main parts depending on its role and functions. the melting part by heating of high inductive frequency, centrifugal forming part for the tube and efficient microstructure control of Bi2212 phase and molding part for tube detachment after heat treatment. In this paper we will introduce self designed Centrifugal Forming Process for HTS tube fabrication and discuss about the results related mold materials in terms of high Tc superconductor.

  • PDF

Characteristics of BSCCO Superconductor Tube Using Partial Melting Process (부분용융법을 이용한 BSCCO 초전도 튜브 특성)

  • 박용민;장건익
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.25-28
    • /
    • 2001
  • Bi-2212 HTS tube was fabricated by centrifugal forming process(CFP). As a variation of melt casting process(MCP) or centrifugal casting technique, the centrifugal forming process is a flexible method for manufacturing Bi-2212 bulk tubes and has been optimized to achieve smooth surface and uniform thickness. At this process, the slurry was prepared in the mixing ratio of 10:1 between Bi-2212 powder and binder and initially charged into the rotating mold under the speed of 300~450 rpm Heat-treatment was performed at the temperature ranges of 860 ~ $890^{\circ}C$ in air for partial melting. The HTS tube fabricated by centrifugal forming process at $890^{\circ}C$ under the rotating speed of 450 rpm was highly densified and the plate-like grains with more than 20$\mu$m were well oriented along the rotating axis. The measured Tc and Jc at 10K were around 85K and 3,000A/cm2 respectively.

  • PDF

Fabrication of Bi2212 superconductor by Centrifugal Forming Process (원심 성형법에 의한 고온초전도체 제조)

  • 정승호;장건익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.503-506
    • /
    • 2002
  • BSCCO 2212 HTS was fabricated by CFP(centrifugal forming process). The powder was initially ground in the mixing ratio of 2:2::1:2 with 10% of SrSO$_4$. The temperature increased up to 1035$^{\circ}C$ and 1200$^{\circ}C$ for melting. The melt was poured into the preheated and rotating copper mould from 200 to 600$^{\circ}C$. The specimen was not broken by thermal impact when the melting temperature was over 1050$^{\circ}C$ and copper mould was preheated over 400$^{\circ}C$ for 30min. A tube type of specimen was annealed at 840$^{\circ}C$ or 860$^{\circ}C$ in oxygen atmosphere for 24hours. Typical microstructure was analyzed in terms of CFP parameters by XRD, SEM, and EDS and also superconducting characteristics were compared.

  • PDF

Characteristics of HTS tube fabricated by centrifugal forming process (원심성형법으로 제조한 고온초전도 튜브의 특성 분석)

  • Jang, Gun-Eik;Park, Yong-Min
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.211-215
    • /
    • 2000
  • Bi-2212 HTS tube was fabricated by CFP(Centrifugal Forming Process). Slury was prepared in the mixing ratio of 8:2 between powder and binder and ball-milled for 24 hrs. Slurry was initially charged into the rotating mold with 300${\sim}$450 rpm and heated at the temperature ranges of 840${\sim}$860$^{\circ}$C for partial melting to finally obtain a uniformly textured tube shape. It was observed the plate-like grains with more than 20 ${\mu}$m were well oriented along the rotating axis and the measured T$_c$ was around 67K. In this paper we will discuss and analyze the tube characteristics depending on many different processing parameters such as, powder composition, binder mixing ratio between powder and binder, motor speed, heating temperature and etc.

  • PDF

Fabrication and Characterization of BSCCO System High-Temperature Superconductor Using Centrifugal Forming Process (원심성형법을 이용한 BSCCO계 고온초전도체 제조 및 특성 분석)

  • 박용민;장건익
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.189-192
    • /
    • 2000
  • High-temperature superconductor of Bi-2212 system was fabricated by CFP(centrifugal forming process). To make a uniform specimen slurry was prepared in the ratio of 7:3(powder:binder) and ball milled for 24 hours. Milled slurry was charged into a rotating mold with 450 rpm and dried at room temperature. Then the specimen was performed binder burn-out at 35$0^{\circ}C$ and heated for partial melting to 86$0^{\circ}C$. XRD analysis of most specimens were shown 2212 phase and observed a local plate shaped microstructure with a well aligned c-axis direction from SEM images. T$_{c}$(Critical temperature) of Bi-2212 was 64K.K.

  • PDF

Characteristics of Bi-2212 Superconductor Tube Depending on Heat-treatment Conditions (열처리 조건에 따른 Bi-2212 초전도 튜브의 특성)

  • 박용민;장건익
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.606-610
    • /
    • 2001
  • Bi-2212 HTS tube was fabricated by centrifugal forming and partial melting processes. Bi-2212 bulk tube has been optimized to achieve smooth surface and uniform thickness. The slurry was prepared in the mixing ratio of 10:1 between Bi-2212 powder and binder and initially charged into the rotating mold under the speed of 300~450 rpm. Heat-treatment was performed at the temperature ranges of 860~89$0^{\circ}C$ in air for partial melting. the HTS tube fabricated by centrifugal forming process at 89$0^{\circ}C$ under the rotating speed of 450 rpm was highly densified and the plate-like grains with more than 20${\mu}{\textrm}{m}$ were well oriented along the rotating axis. The measured Tc and J$_{c}$ at 10K on specimen heat treated at 89$0^{\circ}C$ was around 85 K and 1,200 A/$\textrm{cm}^2$ respectively.y.

  • PDF

Fabrication and Characterization of BSCCO System High-Temperature Superconductor Tube Using Centrifigal Forming Process (원심성형법을 이용한 BSCCO계 고온초전도튜브 제조 및 특성 분석)

  • 박용민;장건익
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.9
    • /
    • pp.801-804
    • /
    • 2000
  • High-temperature superconductor of Bi-2212 system was fabricated by CFP(Centrifugal Forming Process). To make a uniform specimen slurry was prepared in the ratio of 7:3(powder : binder) and ball milled for 24 hours. Milled slurry was charged into a rotating mold with 450 rpm and dried at room temperature. Then the specimen was performed binder burn-out at 35$0^{\circ}C$ and heated for partial melting to 86$0^{\circ}C$. XRD analysis of most specimens were shown 2212 phase and observed a local plate shped microstructure with a well aligned c-axis direction from SEM images. Measured T$_{c}$(Critical temperature) was about 64 K.K.

  • PDF

Effect of Bi2212 Tubes Depending on Mold-design and Cooling Conditions (몰드 디자인과 냉각조건이 Bi2212 초전도튜브에 미치는 영향)

  • Lee, N.I.;Jang, G.E.;Oh, I.S.;Park, K.B.
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.104-107
    • /
    • 2006
  • For the practical application on SCFCL(Superconducting fault current limiters), Bi-2212 tubes were fabricated by Centrifugal Forming Process(CFP). The tubes were annealed at 830, 840, $850^{\circ}C$, respectively for 80 hours in oxygen atmosphere. The tubes heat treated at $840^{\circ}C$ demonstrated better electric characteristics than the tubes heat treated at 830 and $850^{\circ}C$. The typical value measured at 77 K in the self field was around 556 A. In terms of cooling effect on superconducting properties, it was found the electrical properties were quite dependent on the mold design and shapes. In order to check uniformity along the tube, EFDLab fur heat and fluid analysis of NIKA was adopted. It was found out that the simulation data was quite well matched with experimental results.

  • PDF