• 제목/요약/키워드: Centrifugal

검색결과 1,670건 처리시간 0.033초

시일 동특성에 미치는 원심응력의 영향에 관한 연구 (The Effects of Centrifugal Stress on Seal Dynamics)

  • 양보석
    • Tribology and Lubricants
    • /
    • 제5권1호
    • /
    • pp.64-68
    • /
    • 1989
  • The dynamic characteristics of the annular pressure seal employed in pump have been theoretically deduced with consideration of the effects of elastic deformation due to the centrifugal stress. The deformation of the shaft is governed by the linear theory of elasticity. The results derived herein considering the elastic deformation are compared with the previously published author's results in the stiffness and damping coefficients.

동적원심모형실험에 의한 재개발 저수지의 동적 거동특성 (Seismic Behavior of Deterioration Reservoir Embankment Using Dynamic Centrifugal Model Tests)

  • 박성용;장석현;임현택;김정면;김용성
    • 한국농공학회논문집
    • /
    • 제58권3호
    • /
    • pp.91-100
    • /
    • 2016
  • Recently, lots of damages have been lost because large magnitude earthquakes were occurred in the world. It has been increased the number of earthquakes in Korea. It needs improvement required for the repair of deteriorated reservoirs, reinforcement and raised reservoir coping with climate change and earthquake. This study aims to investigate the seismic behavior of deterioration reservoir levee using dynamic centrifugal model test. Therefore, two case tests in centrifugal field of 60 g, the result has provided the influence on the acceleration response, displacement, settlement and the pore water pressure of the reservoir with earthquakes. From the results larger displacement and acceleration response at the front side of reservoir embankment with poor-fabricated core in seismic condition may degrade overall stability. Reasonable reinforcement method of the raised reservoir embankment is required for ensuring long-term stability on earthquake.

Dynamic analysis of a beam subjected to an eccentric rolling disk

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • 제47권4호
    • /
    • pp.455-470
    • /
    • 2013
  • This paper presents a theory concerning the beam element subjected to an eccentric rolling disk (or simply called the eccentric-disk-loaded beam element) such that the dynamic responses of a beam subjected to an eccentric rolling disk with its inertia force, Coriolis force and centrifugal force considered can be easily determined. To this end, the property matrices of an eccentric-disk-loaded beam element are firstly derived by means of the Lagrange's equations. Then, the overall property matrices of the entire vibrating system are determined by directly adding the property matrices of the eccentric-disk-loaded beam element to the overall ones of the entire beam itself. Finally, the Newmark direct integration method is used to solve the equations of motion for the dynamic responses of a beam subjected to an eccentric rolling disk. Some factors relating to the title problem, such as the eccentricity, radius and rotating speed of the rolling disk, and the Coriolis force and centrifugal force induced by the rolling disk are investigated. Numerical results reveal that the influence of last factors on the dynamic responses of the pinned-pinned beam is significant except the centrifugal force.

삼차원 Navier-Stokes 해석과 반응면기법을 이용한 원심다익송풍기의 최적설계 (Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis and Response Surface Method)

  • 서성진;김광용
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1457-1463
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a multi-blade centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k - c turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

Offset 베어링을 활용한 터보냉동기의 회전체동역학 설계 (Rotor Dynamic Design of the Centrifugal Chiller Using Offset Bearing)

  • 이창중;박용석;이준근
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.239-246
    • /
    • 2005
  • A rotor dynamic analysis is implemented to confirm the vibration stability of the high speed centrifugal chiller coupled with gear system. As the rotating speed of the centrifugal chiller under investigation is increased up to 17605rpm at the pinion rotating part, the bearing instability is getting higher and, furthermore, the rotor-bearing system might experience a few critical speed which lead to system failure due to the excessive vibration. In this study, considering the loading capacity and stability conditions, offset journal bearings are adopted for the pinion rotating system and general cylindrical bearings are used for motor part. From the modal analysis, the system is found to be stable as the critical damping ratio which shows the damping characteristics of the system are positive over all operating ranges, and in addition, the synchronous rotating frequency does not come across with any whirl natural frequency. From these results the authors confirm the vibration stability of the rotor-bearing system suggested in this study.

Radial Thrust of Single-Blade Centrifugal Pump

  • Nishi, Yasuyuki;Fukutomi, Junichiro;Fujiwara, Ryota
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권4호
    • /
    • pp.387-395
    • /
    • 2011
  • Single-blade centrifugal pumps are widely used as sewage pumps. However, the impeller of a single-blade pump is subjected to strong radial thrust during pump operation because of the geometrical axial asymmetry of the impeller. Therefore, to improve pump reliability, it is necessary to quantitatively understand radial thrust and elucidate the behavior and mechanism of thrust generating. This study investigates the radial thrust acting up on a single-blade centrifugal impeller by conducting experiments and CFD analysis. The results show that the fluctuating component of radial thrust increases as the flow rate deviates from the design flow rate to low or high value. Radial thrust was modeled by a combination of three components, inertia, momentum, and pressure by applying an unsteady conservation of momentum to the impeller. The sum of these components agrees with the radial thrust calculated by integrating the pressure and the shearing stress on the impeller surface. The behavior of each component was shown, and the effects of each component on radial thrust were clarified. The pressure component has the greatest effect on the time-averaged value and the fluctuating component of radial thrust. The time-averaged value of the inertia component is nearly 0, irrespective of the change in the flow rate. However, its fluctuating component has a magnitude nearly comparable with the pressure component at a low flow rate and slightly decreased with the increase in flow rate.

100kW급 보조동력장치용 압축기 성능시험 (Performance test for the compressor of 100kW APU)

  • 임병준;차봉준;양수석;이경진;백기영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.655-660
    • /
    • 2001
  • The performance test of a centrifugal compressor for APU(Auxiliary Power Unit) which is developed by the collaborative research of KARI and Samsung TechWin has been conducted. The investigated compressor consists of a curved inlet, a centrifugal impeller, a channel diffuser and a plenum chamber. The experiments were carried out in an open-loop centrifugal compressor test rig driven by a turbine. For three different diffusers, overall performance data were obtained at 80%, 90% and 97% of design speed. For the initially designed wedge-type diffuser, test results showed that the compressor was operated at a higher mass flow rate than the design requirement. By reducing the diffuser throat area, the compressor operating range was shifted to lower mass flow rate range. The test result of redesigned wedge-type diffuser showed high pressure loss. To reduce the diffuser loss, diffuser inlet radius was increased and airfoil-type of diffuser was adopted. This airfoil-type diffuser showed reasonal results in terms of design requirement.

  • PDF

Centrifugal Infiltration Process of Fibrous Tubular Preform by Al-Cu Alloy

  • Li, Yanhong;Wang, Kai;Su, Yongkang;Hu, Guoxin
    • Advanced Composite Materials
    • /
    • 제18권4호
    • /
    • pp.381-394
    • /
    • 2009
  • The kinetics of centrifugal infiltration of fibrous tubular preform is built theoretically, and simulations are conducted to study the effects of various casting conditions on infiltration kinetics and macrosegregation by combining with the energy, mass and kinetic equations. A similarity way is used to simplify the one-dimensional model and the parameter is ascertained by an iterative method. The results indicate that the increase of superheat, initial preform temperature, porosity tends to enlarge the remelting region and decrease copper solute concentration at the infiltration front. Higher angular velocity leads to smaller remelting region and solute concentration at the tip. The pressure in the infiltrated region increase significantly when the angular velocity is much higher, which requires a stronger preform. It is observed that the pressure distribution is mainly determined by the angular velocity, and the macrosegregation in the centrifugal casting is greatly dependent on the superheat of inlet metal matrix, initial temperature and porosity of the preform, and the angular velocity.