• Title/Summary/Keyword: Center detection

Search Result 3,830, Processing Time 0.034 seconds

Simple and rapid colorimetric detection of African swine fever virus by loop-mediated isothermal amplification assay using a hydroxynaphthol blue metal indicator

  • Park, Ji-Hoon;Kim, Hye-Ryung;Chae, Ha-Kyung;Park, Jonghyun;Jeon, Bo-Young;Lyoo, Young S.;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.1
    • /
    • pp.19-30
    • /
    • 2022
  • In this study, a simple loop-mediated isothermal amplification (LAMP) combined with visual detection method (vLAMP) assay was developed for the rapid and specific detection of African swine fever virus (ASFV), overcoming the shortcomings of previously described LAMP assays that require additional detection steps or pose a cross-contamination risk. The assay results can be directly detected by the naked eye using hydroxynaphthol blue after incubation for 40 min at 62℃. The assay specifically amplified ASFV DNA and no other viral nucleic acids. The limit of detection of the assay was <50 DNA copies/reaction, which was ten times more sensitive than conventional polymerase chain reaction (cPCR) and comparable to real-time PCR (qPCR). For clinical evaluation, the ASFV detection rate of vLAMP was higher than cPCR and comparable to OIE-recommended qPCR, showing 100% concordance, with a κ value (95% confidence interval) of 1 (1.00~1.00). Considering the advantages of high sensitivity and specificity, no possibility for cross-contamination, and being able to be used as low-cost equipment, the developed vLAMP assay will be a valuable tool for detecting ASFV from clinical samples, even in resource-limited laboratories.

A Secure Encryption-Based Malware Detection System

  • Lin, Zhaowen;Xiao, Fei;Sun, Yi;Ma, Yan;Xing, Cong-Cong;Huang, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1799-1818
    • /
    • 2018
  • Malware detections continue to be a challenging task as attackers may be aware of the rules used in malware detection mechanisms and constantly generate new breeds of malware to evade the current malware detection mechanisms. Consequently, novel and innovated malware detection techniques need to be investigated to deal with this circumstance. In this paper, we propose a new secure malware detection system in which API call fragments are used to recognize potential malware instances, and these API call fragments together with the homomorphic encryption technique are used to construct a privacy-preserving Naive Bayes classifier (PP-NBC). Experimental results demonstrate that the proposed PP-NBC can successfully classify instances of malware with a hit-rate as high as 94.93%.

A method based on Multi-Convolution layers Joint and Generative Adversarial Networks for Vehicle Detection

  • Han, Guang;Su, Jinpeng;Zhang, Chengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1795-1811
    • /
    • 2019
  • In order to achieve rapid and accurate detection of vehicle objects in complex traffic conditions, we propose a novel vehicle detection method. Firstly, more contextual and small-object vehicle information can be obtained by our Joint Feature Network (JFN). Secondly, our Evolved Region Proposal Network (EPRN) generates initial anchor boxes by adding an improved version of the region proposal network in this network, and at the same time filters out a large number of false vehicle boxes by soft-Non Maximum Suppression (NMS). Then, our Mask Network (MaskN) generates an example that includes the vehicle occlusion, the generator and discriminator can learn from each other in order to further improve the vehicle object detection capability. Finally, these candidate vehicle detection boxes are optimized to obtain the final vehicle detection boxes by the Fine-Tuning Network(FTN). Through the evaluation experiment on the DETRAC benchmark dataset, we find that in terms of mAP, our method exceeds Faster-RCNN by 11.15%, YOLO by 11.88%, and EB by 1.64%. Besides, our algorithm also has achieved top2 comaring with MS-CNN, YOLO-v3, RefineNet, RetinaNet, Faster-rcnn, DSSD and YOLO-v2 of vehicle category in KITTI dataset.

Convolutional GRU and Attention based Fall Detection Integrating with Human Body Keypoints and DensePose

  • Yi Zheng;Cunyi Liao;Ruifeng Xiao;Qiang He
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2782-2804
    • /
    • 2024
  • The integration of artificial intelligence technology with medicine has rapidly evolved, with increasing demands for quality of life. However, falls remain a significant risk leading to severe injuries and fatalities, especially among the elderly. Therefore, the development and application of computer vision-based fall detection technologies have become increasingly important. In this paper, firstly, the keypoint detection algorithm ViTPose++ is used to obtain the coordinates of human body keypoints from the camera images. Human skeletal feature maps are generated from this keypoint coordinate information. Meanwhile, human dense feature maps are produced based on the DensePose algorithm. Then, these two types of feature maps are confused as dual-channel inputs for the model. The convolutional gated recurrent unit is introduced to extract the frame-to-frame relevance in the process of falling. To further integrate features across three dimensions (spatio-temporal-channel), a dual-channel fall detection algorithm based on video streams is proposed by combining the Convolutional Block Attention Module (CBAM) with the ConvGRU. Finally, experiments on the public UR Fall Detection Dataset demonstrate that the improved ConvGRU-CBAM achieves an F1 score of 92.86% and an AUC of 95.34%.

Rapid and Accurate Detection of Bacillus anthracis Spores Using Peptide-Quantum Dot Conjugates

  • Park, Tae-Jung;Park, Jong-Pil;Seo, Gwi-Moon;Chai, Young-Gyu;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1713-1719
    • /
    • 2006
  • A method for the simple, rapid, specific, and accurate detection of Bacillus anthracis spores was developed by employing specific capture peptides conjugated with fluorescent quantum dots (QDs). It was possible to distinguish B. anthracis spores from the spores of B. thuringiensis and B. cereus using these peptide-QD conjugates by flow cytometric and confocal laser scanning microscopic analyses. For more convenient high-throughput detection of B. anthracis spores, spectrofluorometric analysis of spore-peptide-QD conjugates was performed. B. anthracis spores could be detected in less than 1 h using this method. In order to avoid any minor yet false-positive signal caused by the presence of B. thuringiensis spores, the B-Negative peptide, which can only bind to B. thuringiensis, conjugated with another type of QD that fluoresces at different wavelength was also developed. In the presence of mixed B. anthracis and B. thuringiensis spores, the BABA peptide conjugated with QD525 and the B-Negative peptide conjugated with QD585 were able to bind to the former and the latter, specifically and respectively, thus allowing the clear detection of B. anthracis spores against B. thuringiensis spores by using two QD-labeling systems. This capture peptide-conjugated QD system should be useful for the detection of B. anthracis spores.

Concurrent Hypermethylation of SFRP2 and DKK2 Activates the Wnt/β-Catenin Pathway and Is Associated with Poor Prognosis in Patients with Gastric Cancer

  • Wang, Hao;Duan, Xiang-Long;Qi, Xiao-Li;Meng, Lei;Xu, Yi-Song;Wu, Tong;Dai, Peng-Gao
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.45-53
    • /
    • 2017
  • Aberrant hypermethylation of Wnt antagonists has been observed in gastric cancer. A number of studies have focused on the hypermethylation of a single Wnt antagonist and its role in regulating the activation of signaling. However, how the Wnt antagonists interacted to regulate the signaling pathway has not been reported. In the present study, we systematically investigated the methylation of some Wnt antagonist genes (SFRP2, SFRP4, SFRP5, DKK1, DKK2, and APC) and their regulatory role in carcinogenesis. We found that aberrant promoter methylation of SFRP2, SFRP4, DKK1, and DKK2 was significantly increased in gastric cancer. Moreover, concurrent hypermethylation of SFRP2 and DKK2 was observed in gastric cancer and this was significantly associated with increased expression of ${\beta}-catenin$, indicating that the joint inactivation of these two genes promoted the activation of the Wnt signaling pathway. Further analysis using a multivariate Cox proportional hazards model showed that DKK2 methylation was an independent prognostic factor for poor overall survival, and the predictive value was markedly enhanced when the combined methylation status of SFRP2 and DKK2 was considered. In addition, the methylation level of SFRP4 and DKK2 was correlated with the patient's age and tumor differentiation, respectively. In conclusion, epigenetic silencing of Wnt antagonists was associated with gastric carcinogenesis, and concurrent hypermethylation of SFRP2 and DKK2 could be a potential marker for a prognosis of poor overall survival.

New Modulation and Detection Method to Reduce Physical Address Reading (광디스크의 물리어드레스 독출에러를 줄이기 위한 변조 및 검출방법)

  • Shim, Jae-Seong;Kim, Ki-Hyun;Park, Hyun-Soo;Park, In-Sik;Seo, Joong-Eon;Shin, Dong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2505-2507
    • /
    • 2001
  • The RF signal is distorted since the cross-talk noise from adjacent tracks and ISI(Inter Symbol Interference) is also incresed as recording density is increased. These cross-talk noise and ISI are main reason of reading error for the embossed pits on the disc. In this study we suggest a new coding method, spaced modulation technique and a detection technique for the spaced modulation. We report the result shows detection performance is improved when we use the suggested spaced modulation code and the detection technique instead of conventional modulation code.

  • PDF

Development of Indocyanine Green and 5-Aminolevulinic Acid Detection System for Surgical Microscope (수술현미경용 다중형광 관측 시스템 연구)

  • Kim, Hong Rae;Lee, Hyun Min;Yoon, Woong Bae;Kim, Young Jae;Kim, Seok Ki;Yoo, Heon;Joo, Jae Young;Kim, Kwang Gi;Lee, Seung-Hoon
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.16-21
    • /
    • 2015
  • Indocyanine green(ICG) and 5-aminolevulinic acid(5-ALA) have been widely used to mark blood vessels or tumors. However, fluorescent dye detection systems were designed to use one type of dyes only. In this study, we proposed a detection system capable of detecting Indocyanine green and 5-aminolevulinic acid. Multiple filters and light sources are integrated into a single system. In this study, we performed analysis of fluorescent dyes and configured a detection system. During the analysis, it was found that Indocyanine green and 5-aminolevulinic acid have the maximum intensity at $40{\mu}M$. We designed light source for fluorescent dyes and conducted compatibility test using a commercial surgical microscope. The fluorescent dye detection system was configured based on the experimental results. The developed system successfully detects Indocyanine green and 5-aminolevulinic acid. Therefore, more efficient surgical operations can be achieved using both fluorescent dyes at the same time. We expect that the developed system can increase the survival rate of patients.

A Study on Edge Detection Considering Center Pixels of Mask (마스크의 중심 화소를 고려한 에지 검출에 관한 연구)

  • Park, Hwa-Jung;Jung, Hwae-Sung;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.136-138
    • /
    • 2022
  • Edge detection includes information such as the shape, position, size, and material of an object with respect to an image, and is a very important factor in analyzing the characteristics of the image. Existing edge detection methods include Sobel edge detection filter, Roberts edge detection filter, Prewitt edge detection filter, and LoG (Lapacian of Gaussian) using secondary differentials. However, these methods have a disadvantage in that the edge detection results are somewhat insufficient because a fixed weight mask is applied to the entire image area. Therefore, in this paper, we propose an edge detection algorithm that increases edge detection characteristics by considering the center pixel in the mask. In addition, in order to confirm the proposed edge detection performance, it was compared through simulation result images.

  • PDF

Development and Evaluation of a Next-Generation Sequencing Panel for the Multiple Detection and Identification of Pathogens in Fermented Foods

  • Dong-Geun Park;Eun-Su Ha;Byungcheol Kang;Iseul Choi;Jeong-Eun Kwak;Jinho Choi;Jeongwoong Park;Woojung Lee;Seung Hwan Kim;Soon Han Kim;Ju-Hoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.83-95
    • /
    • 2023
  • These days, bacterial detection methods have some limitations in sensitivity, specificity, and multiple detection. To overcome these, novel detection and identification method is necessary to be developed. Recently, NGS panel method has been suggested to screen, detect, and even identify specific foodborne pathogens in one reaction. In this study, new NGS panel primer sets were developed to target 13 specific virulence factor genes from five types of pathogenic Escherichia coli, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium, respectively. Evaluation of the primer sets using singleplex PCR, crosscheck PCR and multiplex PCR revealed high specificity and selectivity without interference of primers or genomic DNAs. Subsequent NGS panel analysis with six artificially contaminated food samples using those primer sets showed that all target genes were multi-detected in one reaction at 108-105 CFU of target strains. However, a few false-positive results were shown at 106-105 CFU. To validate this NGS panel analysis, three sets of qPCR analyses were independently performed with the same contaminated food samples, showing the similar specificity and selectivity for detection and identification. While this NGS panel still has some issues for detection and identification of specific foodborne pathogens, it has much more advantages, especially multiple detection and identification in one reaction, and it could be improved by further optimized NGS panel primer sets and even by application of a new real-time NGS sequencing technology. Therefore, this study suggests the efficiency and usability of NGS panel for rapid determination of origin strain in various foodborne outbreaks in one reaction.