• Title/Summary/Keyword: Center Pixel

Search Result 422, Processing Time 0.034 seconds

An Improved Validation Technique for the Temporal Discrepancy when Estimated Solar Surface Insolation Compare with Ground-based Pyranometer: MTSAT-1R Data use (표면도달일사량 검증 시 발생하는 시간 불일치 조정을 통한 정확한 일사량 검증: MTSAT-1R 자료 이용)

  • Yeom, Jong-Min;Han, Kyung-Soo;Lee, Chang-Suk;Kim, Do-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.605-612
    • /
    • 2008
  • In this study, we estimate solar surface insolation (SSI) by using physical methods with MTSAT-1R data. SSI is regarded as crucial parameter when interpreting solar-earth energy system, climate change, and agricultural production predict application. Most of SSI estimation model mainly uses ground based-measurement such as pyranometer to tune the constructed model and to validate retrieved SSI data from optical channels. When compared estimated SSI with pyranometer measurements, there are some systemic differences between those instruments. The pyranometer data observed upward-looking hemispherical solid angle and distributed hourly measurements data which are averaged every 2 minute instantaneous observation. Whereas MTSAT-1R channels data are taken instantaneously images at fixed measurement time over scan area, and are pixel-based observation with a much smaller solid angle view. Those temporal discrepancies result from systemic differences can induce validation error. In this study, we adjust hour when estimate SSI to improve the retrieved accurate SSI.

Classification of Natural and Artificial Forests from KOMPSAT-3/3A/5 Images Using Deep Neural Network (심층신경망을 이용한 KOMPSAT-3/3A/5 영상으로부터 자연림과 인공림의 분류)

  • Baek, Won-Kyung;Lee, Yong-Suk;Park, Sung-Hwan;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1965-1974
    • /
    • 2021
  • Satellite remote sensing approach can be actively used for forest monitoring. Especially, it is much meaningful to utilize Korea multi-purpose satellites, an independently operated satellite in Korea, for forest monitoring of Korea, Recently, several studies have been performed to exploit meaningful information from satellite remote sensed data via machine learning approaches. The forest information produced through machine learning approaches can be used to support the efficiency of traditional forest monitoring methods, such as in-situ survey or qualitative analysis of aerial image. The performance of machine learning approaches is greatly depending on the characteristics of study area and data. Thus, it is very important to survey the best model among the various machine learning models. In this study, the performance of deep neural network to classify artificial or natural forests was analyzed in Samcheok, Korea. As a result, the pixel accuracy was about 0.857. F1 scores for natural and artificial forests were about 0.917 and 0.433 respectively. The F1 score of artificial forest was low. However, we can find that the artificial and natural forest classification performance improvement of about 0.06 and 0.10 in F1 scores, compared to the results from single layered sigmoid artificial neural network. Based on these results, it is necessary to find a more appropriate model for the forest type classification by applying additional models based on a convolutional neural network.

Feasibility of Spin-Echo Echo-Planar Imaging MR Elastography in Livers of Children and Young Adults

  • Kim, Jin Kyem;Yoon, Haesung;Lee, Mi-Jung;Kim, Myung-Joon;Han, Kyunghwa;Koh, Hong;Kim, Seung;Han, Seok Joo;Shin, Hyun Joo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.251-258
    • /
    • 2019
  • Purpose: To assess the feasibility of the use of spin-echo echo-planar imaging (SE-EPI) magnetic resonance elastography (MRE) in livers of children and young adults. Materials and Methods: Patients (${\leq}20$ years old) who underwent 3T SE-EPI MRE were included retrospectively. Subjects were divided into three groups according to the purpose of the liver MRI: suspicion of fatty liver or focal fat deposition in the liver (FAT group), liver fibrosis after receiving a Kasai operation from biliary atresia (BA group), and hepatic iron deposition after receiving chemotherapy or transfusions (IRON group). Technical failure of MRE was defined when a stiffness map showed no pixel value with a confidence index higher than 95%, and the patients were divided as success and failure groups accordingly. Clinical findings including age, gender, weight, height, and body mass index and magnetic resonance imaging results including proton density fat fraction (PDFF), $T2^*$, and MRE values were assessed. Factors affecting failure of MRE were evaluated and the image quality in wave propagation image and stiffness map was evaluated using the appropriate scores. Results: Among total 240 patients (median 15 years, 211 patients in the FAT, 21 patients in the BA, and 8 patients in the IRON groups), technical failure was noted in six patients in the IRON group (6/8 patients, 75%), while there were no failures noted in the FAT and BA groups. These six patients had $T2^*$ values ranging from 0.9 to 3.8 ms. The image quality scores were not significantly different between the FAT and BA groups (P > 0.999), while the scores were significantly lower in the IRON group (P < 0.001). Conclusion: The 3T SE-EPI MRE in children and young adults had a high technical success rate. The technical failure was occurred in children with decreased $T2^*$ value (${\leq}3.8ms$) from iron deposition.

The Performance Improvement of U-Net Model for Landcover Semantic Segmentation through Data Augmentation (데이터 확장을 통한 토지피복분류 U-Net 모델의 성능 개선)

  • Baek, Won-Kyung;Lee, Moung-Jin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1663-1676
    • /
    • 2022
  • Recently, a number of deep-learning based land cover segmentation studies have been introduced. Some studies denoted that the performance of land cover segmentation deteriorated due to insufficient training data. In this study, we verified the improvement of land cover segmentation performance through data augmentation. U-Net was implemented for the segmentation model. And 2020 satellite-derived landcover dataset was utilized for the study data. The pixel accuracies were 0.905 and 0.923 for U-Net trained by original and augmented data respectively. And the mean F1 scores of those models were 0.720 and 0.775 respectively, indicating the better performance of data augmentation. In addition, F1 scores for building, road, paddy field, upland field, forest, and unclassified area class were 0.770, 0.568, 0.433, 0.455, 0.964, and 0.830 for the U-Net trained by original data. It is verified that data augmentation is effective in that the F1 scores of every class were improved to 0.838, 0.660, 0.791, 0.530, 0.969, and 0.860 respectively. Although, we applied data augmentation without considering class balances, we find that data augmentation can mitigate biased segmentation performance caused by data imbalance problems from the comparisons between the performances of two models. It is expected that this study would help to prove the importance and effectiveness of data augmentation in various image processing fields.

Design of a Depth Encoding Detector using Light Guides with Different Reflector Patterns for Each Layer (각 층별 반사체 패턴이 서로 다른 광가이드를 사용한 반응 깊이 측정 검출기 설계)

  • Seung-Jae, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.31-36
    • /
    • 2023
  • Among imaging and treatment devices for small animals, positron emission tomography(PET) causes a change in spatial resolution within a field of view. This is a phenomenon caused by using a small gantry and a thin and long scintillation pixel, and detectors that measure the interaction depth are being developed and researched to solve this problem. In this study, a detector that measures the interaction depth was designed using several scintillator blocks and light guides with different reflector patterns. The scintillator block composed of 4 × 4 arrays of 3 mm × 3 mm × 5 mm scintillation pixels formed four layers, and a light guide was inserted in each layer to configure the entire detector. In order to check whether the interaction depth was measured, a gamma ray interaction was generated at the center of all scintillation pixels to acquire data and then reconstructed into a flood image. The reflector patterns of the light guides inserted between the layers were all different, so the positions of the scintillation pixels for each layer were formed in different locations. It is considered that even spatial resolution can be achieved over all regions of the field of view if all positions of the scintillation pixels thus formed are separated and used for image reconstruction.

Evaluation of the Satellite-based Air Temperature for All Sky Conditions Using the Automated Mountain Meteorology Station (AMOS) Records: Gangwon Province Case Study (산악기상관측정보를 이용한 위성정보 기반의 전천후 기온 자료의 평가 - 강원권역을 중심으로)

  • Jang, Keunchang;Won, Myoungsoo;Yoon, Sukhee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Surface air temperature ($T_{air}$) is a key variable for the meteorology and climatology, and is a fundamental factor of the terrestrial ecosystem functions. Satellite remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides an opportunity to monitor the $T_{air}$. However, the several problems such as frequent cloud cover and mountainous region can result in substantial retrieval error and signal loss in MODIS $T_{air}$. In this study, satellite-based $T_{air}$ was estimated under both clear and cloudy sky conditions in Gangwon Province using Aqua MODIS07 temperature profile product (MYD07_L2) and GCOM-W1 Advanced Microwave Scanning Radiometer 2 (AMSR2) brightness temperature ($T_b$) at 37 GHz frequency, and was compared with the measurements from the Automated Mountain Meteorology Stations (AMOS). The application of ambient temperature lapse rate was performed to improve the retrieval accuracy in mountainous region, which showed the improvement of estimation accuracy approximately 4% of RMSE. A simple pixel-wise regression method combining synergetic information from MYD07_L2 $T_{air}$ and AMSR2 $T_b$ was applied to estimate surface $T_{air}$ for all sky conditions. The $T_{air}$ retrievals showed favorable agreement in comparison with AMOS data (r=0.80, RMSE=7.9K), though the underestimation was appeared in winter season. Substantial $T_{air}$ retrievals were estimated 61.4% (n=2,657) for cloudy sky conditions. The results presented in this study indicate that the satellite remote sensing can produce the surface $T_{air}$ at the complex mountainous region for all sky conditions.

Suggested Protocol for Efficient Medical Image Information Exchange in Korea: Breast MRI (효율적 의료영상정보교류를 위한 프로토콜 제안: 유방자기공명영상)

  • Park, Ji Hee;Choi, Seon-Hyeong;Kim, Sungjun;Yong, Hwan Seok;Woo, Hyunsik;Jin, Kwang Nam;Jeong, Woo Kyoung;Shin, Na-Young;Choi, Moon Hyung;Jung, Seung Eun
    • Journal of the Korean Society of Radiology
    • /
    • v.79 no.5
    • /
    • pp.254-258
    • /
    • 2018
  • Purpose: Establishment of an appropriate protocol for breast magnetic resonance imaging (MRI) in the study of image quality standards to enhance the effectiveness of medical image information exchange, which is part of the construction and activation of clinical information exchange for healthcare informatization. Materials and Methods: The recommended protocols of breast and MRI scans were reviewed and the questionnaire was prepared by a responsible researcher. Then, a panel of 9 breast dedicated radiologists was set up in Korea. The expert panel conducted a total of three Delphi agreements to draw up a consensus on the breast MRI protocol. Results: The agreed breast MRI recommendation protocol is a 1.5 Tesla or higher device that acquires images with prone position using a breast dedicated coil and includes T2-weighted and pre-contrast T1-weighted images. Contrast enhancement images are acquired at least two times, and include 60-120 seconds between images and after 4 minutes. The contrast enhancement T1-weighted image should be less than 3 mm in thickness, less than 120 seconds in temporal resolution, and less than $1.5mm^2$ in-plane pixel resolution. Conclusion: The Delphi agreement of the domestic breast imaging specialist group has established the recommendation protocol of the effective breast MRI.

(Image Analysis of Electrophoresis Gels by using Region Growing with Multiple Peaks) (다중 피크의 영역 성장 기법에 의한 전기영동 젤의 영상 분석)

  • 김영원;전병환
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.444-453
    • /
    • 2003
  • Recently, a great interest of bio-technology(BT) is concentrated and the image analysis technique for electrophoresis gels is highly requested to analyze genetic information or to look for some new bio-activation materials. For this purpose, the location and quantity of each band in a lane should be measured. In most of existing techniques, the approach of peak searching in a profile of a lane is used. But this peak is improper as the representative of a band, because its location does not correspond to that of the brightest pixel or the center of gravity. Also, it is improper to measure band quantity in most of these approaches because various enhancement processes are commonly applied to original images to extract peaks easily. In this paper, we adopt an approach to measure accumulated brightness as a band quantity in each band region, which Is extracted by not using any process of changing relative brightness, and the gravity center of the region is calculated as a band location. Actually, we first extract lanes with an entropy-based threshold calculated on a gel-image histogram. And then, three other methods are proposed and applied to extract bands. In the MER method, peaks and valleys are searched on a vertical search line by which each lane is bisected. And the minimum enclosing rectangle of each band is set between successive two valleys. On the other hand, in the RG-1 method, each band is extracted by using region growing with a peak as a seed, separating overlapped neighbor bands. In the RG-2 method, peaks and valleys are searched on two vertical lines by which each lane is trisected, and the left and right peaks nay be paired up if they seem to belong to the same band, and then each band region is grown up with a peak or both peaks if exist. To compare above three methods, we have measured the location and amount of bands. As a result, the average errors in band location of MER, RG-1, and RG-2 were 6%, 3%, and 1%, respectively, when the lane length is normalized to a unit value. And the average errors in band amount were 8%, 5%, and 2%, respectively, when the sum of band amount is normalized to a unit value. In conclusion, RG-2 was shown to be more reliable in the accuracy of measuring the location and amount of bands.

EVALUATION OF RADIOPACITY AND DISCRIMINABILITY OF VARIOUS FIBER REINFORCED COMPOSITE POSTS (수종의 섬유 강화 레진 포스트의 방사선 불투과도와 식별도 평가)

  • Lee, Eun-Hye;Choi, Hang-Moon;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.3
    • /
    • pp.188-197
    • /
    • 2010
  • The purpose of this study was to compare radiopacity and radiographic discriminability of various FRC-Posts. Six FRC-Posts were investigated ; 1) FRC Postec Plus (Ivoclar Vivadent AG, Schaan, Liechtenstein), 2) Snowlight (Carbotech, Lewis center, OH, USA), 3) Dentin Post (Komet Brasseler, Lamgo, Germany), 4) Rely-X Fiber Post (3M ESPE, St.paul, MN, USA), 5) D.T.-Light Post (BISCO, Schaumburg, IL,USA), 6) Luxapost (DMG, Hamburg, Germany) The radiographs of each post with a reference 1 mm / 2 mm aluminum step-wedge was taken using digital sensor. The optical density were calculated by gray value of $10{\times}10$ pixel and compared in mm Al equivalent at five points. Six maxillary incisors of similar radiopacity were used. Radiographs of posts in Mx. incisors of lingual side of dry mandible were taken. We showed radiographs and asked the questionnaire to 3 radiologists, 3 endodontists, 3 general practitioners. The questionnaire was comprised of choices of the highest, lowest radiopaque individual post and the choices of best discriminable post at apical, coronal area. The following results were obtained. 1. Each post system showed various radiopacity. 2. There was change of discriminability between each post and simulated specimens regardless of examiner. Although each post showed various radiopacity, the difference of radiopacity did not affect on discriminability.

Verification of Indicator Rotation Correction Function of a Treatment Planning Program for Stereotactic Radiosurgery (방사선수술치료계획 프로그램의 지시자 회전 오차 교정 기능 점검)

  • Chung, Hyun-Tai;Lee, Re-Na
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.2
    • /
    • pp.47-51
    • /
    • 2008
  • Objective: This study analyzed errors due to rotation or tilt of the magnetic resonance (MR) imaging indicator during image acquisition for a stereotactic radiosurgery. The error correction procedure of a commercially available stereotactic neurosurgery treatment planning program has been verified. Materials and Methods: Software virtual phantoms were built with stereotactic images generated by a commercial programming language, Interactive Data Language (version 5.5). The thickness of an image slice was 0.5 mm, pixel size was $0.5{\times}0.5mm$, field of view was 256 mm, and image resolution was $512{\times}512$. The images were generated under the DICOM 3.0 standard in order to be used with Leksell GammaPlan$^{(R)}$. For the verification of the rotation error correction function of Leksell GammaPlan$^{(R)}$, 45 measurement points were arranged in five axial planes. On each axial plane, there were nine measurement points along a square of length 100 mm. The center of the square was located on the z-axis and a measurement point was on the z-axis, too. Five axial planes were placed at z=-50.0, -30.0, 0.0, 30.0, 50.0 mm, respectively. The virtual phantom was rotated by $3^{\circ}$ around one of x, y, and z-axis. It was also rotated by $3^{\circ}$ around two axes of x, y, and z-axis, and rotated by $3^{\circ}$ along all three axes. The errors in the position of rotated measurement points were measured with Leksell GammaPlan$^{(R)}$ and the correction function was verified. Results: The image registration errors of the virtual phantom images was $0.1{\pm}0.1mm$ and it was within the requirement of stereotactic images. The maximum theoretical errors in position of measurement points were 2.6 mm for a rotation around one axis, 3.7 mm for a rotation around two axes, and 4.5 mm for a rotation around three axes. The measured errors in position was $0.1{\pm}0.1mm$ for a rotation around single axis, $0.2{\pm}0.2mm$ for double and triple axes. These small errors verified that the rotation error correction function of Leksell GammaPlan$^{(R)}$ is working fine. Conclusion: A virtual phantom was built to verify software functions of stereotactic neurosurgery treatment planning program. The error correction function of a commercial treatment planning program worked within nominal error range. The virtual phantom of this study can be applied in many other fields to verify various functions of treatment planning programs.