• Title/Summary/Keyword: Censored survival data

Search Result 97, Processing Time 0.021 seconds

The Bivariate Kumaraswamy Weibull regression model: a complete classical and Bayesian analysis

  • Fachini-Gomes, Juliana B.;Ortega, Edwin M.M.;Cordeiro, Gauss M.;Suzuki, Adriano K.
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.523-544
    • /
    • 2018
  • Bivariate distributions play a fundamental role in survival and reliability studies. We consider a regression model for bivariate survival times under right-censored based on the bivariate Kumaraswamy Weibull (Cordeiro et al., Journal of the Franklin Institute, 347, 1399-1429, 2010) distribution to model the dependence of bivariate survival data. We describe some structural properties of the marginal distributions. The method of maximum likelihood and a Bayesian procedure are adopted to estimate the model parameters. We use diagnostic measures based on the local influence and Bayesian case influence diagnostics to detect influential observations in the new model. We also show that the estimates in the bivariate Kumaraswamy Weibull regression model are robust to deal with the presence of outliers in the data. In addition, we use some measures of goodness-of-fit to evaluate the bivariate Kumaraswamy Weibull regression model. The methodology is illustrated by means of a real lifetime data set for kidney patients.

Estimation of Bivariate Survival Function for Possibly Censored Data

  • Park Hyo-Il;Na Jong-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.783-795
    • /
    • 2005
  • We consider to obtain an estimate of bivariate survival function for the right censored data with the assumption that the two components of censoring vector are independent. The estimate is derived from an ad hoc approach based on the representation of survival function. Then the resulting estimate can be considered as an extension of the Susarla- Van Ryzin estimate to the bivariate data. Also we show the consistency and weak convergence for the proposed estimate. Finally we compare our estimate with Dabrowska's estimate with an example and discuss some properties of our estimate with brief comment on the extension to the multivariate case.

A Study on the Conditional Survival Function with Random Censored Data

  • Lee, Won-Kee;Song, Myung-Unn
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.405-411
    • /
    • 2004
  • In the analysis of cancer data, it is important to make inferences of survival function and to assess the effects of covariates. Cox's proportional hazard model(PHM) and Beran's nonparametric method are generally used to estimate the survival function with covariates. We adjusted the incomplete survival time using the Buckley and James's(1979) pseudo random variables, and then proposed the estimator for the conditional survival function. Also, we carried out the simulation studies to compare the performances of the proposed method.

  • PDF

Conditional Bootstrap Methods for Censored Survival Data

  • Kim, Ji-Hyun
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.197-218
    • /
    • 1995
  • We first consider the random censorship model of survival analysis. Efron (1981) introduced two equivalent bootstrap methods for censored data. We propose a new bootstrap scheme, called Method 3, that acts conditionally on the censoring pattern when making inference about aspects of the unknown life-time distribution F. This article contains (a) a motivation for this refined bootstrap scheme ; (b) a proof that the bootstrapped Kaplan-Meier estimatro fo F formed by Method 3 has the same limiting distribution as the one by Efron's approach ; (c) description of and report on simulation studies assessing the small-sample performance of the Method 3 ; (d) an illustration on some Danish data. We also consider the model in which the survival times are censered by death times due to other caused and also by known fixed constants, and propose an appropriate bootstrap method for that model. This bootstrap method is a readily modified version of the Method 3.

  • PDF

Bayesian Semi-Parametric Regression for Quantile Residual Lifetime

  • Park, Taeyoung;Bae, Wonho
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • The quantile residual life function has been effectively used to interpret results from the analysis of the proportional hazards model for censored survival data; however, the quantile residual life function is not always estimable with currently available semi-parametric regression methods in the presence of heavy censoring. A parametric regression approach may circumvent the difficulty of heavy censoring, but parametric assumptions on a baseline hazard function can cause a potential bias. This article proposes a Bayesian semi-parametric regression approach for inference on an unknown baseline hazard function while adjusting for available covariates. We consider a model-based approach but the proposed method does not suffer from strong parametric assumptions, enjoying a closed-form specification of the parametric regression approach without sacrificing the flexibility of the semi-parametric regression approach. The proposed method is applied to simulated data and heavily censored survival data to estimate various quantile residual lifetimes and adjust for important prognostic factors.

Effects of Informative Censoring in the Proportional Hazards Model (비례위험모형에서 정보적 중도절단의 효과)

  • 정대현;홍승만;원동유
    • Journal of Applied Reliability
    • /
    • v.2 no.2
    • /
    • pp.121-133
    • /
    • 2002
  • This paper concerns informative censoring and some of the difficulties it creates in analysis of survival data. For analyzing censored data, misclassification of informative censoring into random censoring is often unavoidable. It is worthwhile to investigate the impact of neglecting informative censoring on the estimation of the parameters of the proportional hazards model. The proposed model includes a primary failure which can be censored informatively or randomly and a followup failure which may be censored randomly. Simulation shows that the loss is about 30% with regard to the confidence interval if we neglect the informative censoring.

  • PDF

Tests based on EDF statistics for randomly censored normal distributions when parameters are unknown

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.5
    • /
    • pp.431-443
    • /
    • 2019
  • Goodness-of-fit techniques are an important topic in statistical analysis. Censored data occur frequently in survival experiments; therefore, many studies are conducted when data are censored. In this paper we mainly consider test statistics based on the empirical distribution function (EDF) to test normal distributions with unknown location and scale parameters when data are randomly censored. The most famous EDF test statistic is the Kolmogorov-Smirnov; in addition, the quadratic statistics such as the $Cram{\acute{e}}r-von$ Mises and the Anderson-Darling statistic are well known. The $Cram{\acute{e}}r-von$ Mises statistic is generalized to randomly censored cases by Koziol and Green (Biometrika, 63, 465-474, 1976). In this paper, we generalize the Anderson-Darling statistic to randomly censored data using the Kaplan-Meier estimator as it was done by Koziol and Green. A simulation study is conducted under a particular censorship model proposed by Koziol and Green. Through a simulation study, the generalized Anderson-Darling statistic shows the best power against almost all alternatives considered among the three EDF statistics we take into account.

Dimension reduction for right-censored survival regression: transformation approach

  • Yoo, Jae Keun;Kim, Sung-Jin;Seo, Bi-Seul;Shin, Hyejung;Sim, Su-Ah
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.3
    • /
    • pp.259-268
    • /
    • 2016
  • High-dimensional survival data with large numbers of predictors has become more common. The analysis of such data can be facilitated if the dimensions of predictors are adequately reduced. Recent studies show that a method called sliced inverse regression (SIR) is an effective dimension reduction tool in high-dimensional survival regression. However, it faces incapability in implementation due to a double categorization procedure. This problem can be overcome in the right-censoring type by transforming the observed survival time and censoring status into a single variable. This provides more flexibility in the categorization, so the applicability of SIR can be enhanced. Numerical studies show that the proposed transforming approach is equally good to (or even better) than the usual SIR application in both balanced and highly-unbalanced censoring status. The real data example also confirms its practical usefulness, so the proposed approach should be an effective and valuable addition to usual statistical practitioners.

Robust Regression and Stratified Residuals for Left-Truncated and Right-Censored Data

  • Kim, Chul-Ki
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.3
    • /
    • pp.333-354
    • /
    • 1997
  • Computational algorithms to calculate M-estimators and rank estimators of regression parameters from left-truncated and right-censored data are developed herein. In the case of M-estimators, new statistical methods are also introduced to incorporate leverage assements and concomitant scale estimation in the presence of left truncation and right censoring on the observed response. Furthermore, graphical methods to examine the residuals from these data are presented. Two real data sets are used for illustration.

  • PDF

INDEPENDENCE TEST FOR BIVARIATE CENSORED DATA UNDER UNIVARIATE CENSORSHIP

  • Kim, Jin-Heum;Cai, Jian-Wen
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.2
    • /
    • pp.163-174
    • /
    • 2003
  • We propose a test for independence of bivariate censored data under univariate censorship. To do this, we first introduce a process defined by the difference between bivariate survival function estimator proposed by Lin and Ying (1993) and the product of the product-limit estimators (Kaplan and Meier, 1958) for the marginal survival functions, and derive its asymptotic properties under the null hypothesis of independence. We propose a Cramer-von Mises-type test procedure based on the process . We conduct simulation studies to investigate the finite-sample performance of the proposed test and illustrate the proposed test with a real example.