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Estimation of Bivariate Survival Function
for Possibly Censored Datal)
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Abstract

We consider to obtain an estimate of bivariate survival function for the right
censored data with the assumption that the two components of censoring vector are
independent. The estimate is derived from an ad hoc approach based on the
representation of survival function. Then the resulting estimate can be considered as
an extension of the Susarla-Van Ryzin estimate to the bivariate data. Also we show
the consistency and weak convergence for the proposed estimate. Finally we compare
our estimate with Dabrowska's estimate with an example and discuss some properties
of our estimate with brief comment on the extension to the multivariate case.

Keywords : bivariate survival function, consistency, Susarla-Van Ryzin estimate, weak
convergence

1. Introduction

The estimation of the bivariate survival function for possibly right censored data has long
been a subject for research among statisticians. However the results have not been quite
satisfactory for some reasons. For examples, some estimates require the iterative method since
they have the implicit forms (Campbell, 1981, Korwar and Dahiya, 1982 and Hanley and
Parnes, 1983) or are too complicated to derive its asymptotic variance (cf. Tsai, Leurgans and
Crowley, 1986). Or some estimates depend on the choice of the conditioning component since
different choice of conditioning component produces different estimate (cf. Campbell, 1982 and
Burke, 1988). Dabrowska (1988) and Prentice and Cai (1991) considered the estimates based on
the representations of a bivariate survival function in terms of its conditional bivariate hazard
function. However we note that the representation is not unique and so each representation
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gives rise to a different estimate (cf. Andersen, Borgan, Gill and Keiding, 1991). Also most of
the mentioned estimates are not proper since they contain negative measures. Pruitt (1991)
identified all the points which assign the negative measures. Recently, Van Der Laan (1996)
proposed an estimate to eliminate the negative measures and improve the efficiency based on
a reduced (or transformed) data set. However this also requires an iterative method and
induces the bandwidth selection problem to improve the efficiency of the estimate. All the
estimates mentioned up to now are based on the general random censoring schemes.

Also Tsai and Crowley (1998) considered to estimate bivariate survival function under
somewhat alleviated condition, which confines univariate censoring. In this paper, we consider
to propose an estimate of bivariate survival function, which is easy to compute under the
assumption that the two components of censoring vector are independent. This situation would
not be rare. For example, suppose that there is an electronic system with two components
whose functioning are dependent each other and each component may be out of order by
absorbing different shocks, which give independent effect on each component. We propose an
estimate in the next section and then show the consistency and weak convergence in Section
3. Finally we illustrate our proposed estimate with an example and discuss some properties of
our proposed estimate with brief comment on the extension to the multivariate case.

2. Estimation of the Bivariate Survival Function

Let (X, Xj2), -, (X, X,2) be a bivariate random sample of survival times on some

probability space with a continuous bivariate survival function S Also let

(Y, Yip), -, (Y, Y,,) be an independent bivariate random sample of censoring times with a

continuous distribution function G on the same probability space. Since the censoring schemes
are involved, we may only observe that
{(Tw Ts), (5i1: P ), 1 <i<n}
with Tj; = min {X;;, ¥;;} and §;;=I(X;; < Y;) for each 1 <i<n and j=1,2, wherel(- )
is an indicator function. Based on this sample, we consider to obtain a nonparametric estimate
of the bivariate survival function §,
S, - )=P{Xy> -, Xp> -}
with the additional assumption that ¥]; and Y], are independent. For this purpose, first of all,
we note that
H(t),t)) = P{Ty > t, Ty > ty}
= P{X;; > t,, Yy > ty, Xy > by, Yip > 15}
= 8(t), 1) G, (t,) G (t,),
where Gj(t;) = P{Y;; > t;} for each j=1,2. Then we observe that
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S(tb tz) = H(tl; ty )/{Gl (tl )G2 (tz )}, 2.1

for G;(t;) >0 for each j=1,2. Therefore we may propose an estimate 5, for .S as follows:

Sn, (tb t2 )

— 1 . (5 i1 O ) (6 12 )

—~Z (Ty>t, To>t) 11 +———(—l—— T1 1+——i—)———

n = ¢ T <t -1 + 1 .7 < ¢ —1 + 1
1Ty <4 T =t

= Hn (th t2) Win (tl ) %n (t2 ):
where Ty is the ith ordered observation among 73, -+, 7,; for each j=1,2 and §;) is the
concomitant of Ti;;y- We note that H, is just the empirical survival function of H and
W, (t;), a consistent estimate of 1/G; (t;) for each j, j=1,2, which will be shown in the

next section. Therefore the consistency of 9, will follow easily. Also we note that for the

univariate case, for each j=1,2
1l (6 )
S}n(tj)—?i;](ﬂj>tj)i:¥;!: 1+Ai)’l,+—1}
is just the Susarla-Van Ryzin estimate (1980) of jth marginal survival function, S}(tj), which

is a version of the Bayesian estimates proposed by Susarla and Van Ryzin (1976). Therefore
our estimate can be considered as an extension of the Susarla-Van Ryzin estimate to the
bivariate data. In the next section, we deal with the consistency and weak convergence.

3. Consistency and Weak Convergence

For discussions of the asymptotic properties for S,, first of all, we introduce several
notations. Let for each j, j=1,2

Also let K, (t;) =(1/n)Y I(T; < t;,6;=0) be the empirical counterpart of K;(t;) for each
=1

j=1,2. Then we note that K;(t;) is the jth marginal sub-distribution function. Also we

define the jth marginal function H;(t;) = P{T};>t;} of H and its empirical counterpart

H (1m) E T >t . Now we consider the following decomposition.

Saltty) = S(ty, ty) = H (ty, 6 ){Wi, (&) Wan (85) — 1/[G} (1) Go (&)1}
+ [H, (4, 1) — Hity, 1,))/[G (8) Gy (8)]
= H,(t,,1,)[Wh, (t,) — 1/G) (8, )] Whn ()
+ H, (81, 8)/Gy (8)][ W, (1) — 1/G; (82)]
+H, (4, ty) — H(t, 1,)]/1Gr (8) Gy (8)]- @D
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From the Taylor's expansion, we have for each j, j=1,2

Wi (t;) = 1/G;(¢;) = exp{In [ W}, (t;)] }— exp {In [1/G; (¢;)] }
= exp{ln [l/G (¢;)] Hexp [In [ W, (¢;)] —

= {In[W,, (¢t;)]- In[1/G;(¢,)] }/G; ()

+ {ln[ W (8] 21n[1/G’( ]}2exp{cln[1/G( )},

In [1/G;(¢;)]] -1}

where ¢ is a constant between 0 and In[W,,(t;)]—In[1/G;(t;)]. The following two results

are due to Susarla and Van Ryzin (1978).

Lemma 1. For each j, = 1,2 and for any 7; such that Ilg('rj) >0
nﬂ”ln [ W] — In [1/G} |L — 0 almost surely for any 268 < 1,

where | |L is the supremum norm over (0,7;].

Lemma 2. For each j, j=1,2,

Va7, )~ /G )] ﬁz{f = %{L}IL*

almost surely at a rate O (n™#?) with 28 < 1.

Then we can show the strong uniform consistency of S, in the following sense using
Lemma 1.

Theorem 1. For any (7,7,) such that H(r,7,) > 0, almost surely
]

Proof. From the decomposition (3.1) and the triangle inequality, we have that
15 81, oy < Nl o= 1B, Vil
+ " H”/le ||(T1,T2)" W/;n - 1/6;2"(7-1,7—2)_}- "I{n - }I"(‘rl,rz)/[Gyl (Tl ) G2 (T2 )]

Then the result follows from Lemma 1 with the fact that the logarithm function is continuous

7)

For the derivation of the weak convergence, we note that for each j, by denoting

= Vn(H,— H;) and V, = (K~ K;),

{jd_"m fi[ﬁ}'\/'f L_L .+ﬁf0%du‘;ﬂ—fg)
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_ tjan m(t) n
— [ Em R+ / 8 GH + Ry, + Ry,

H
= Z, (tj) + Ry, + Ry, say (3.2)
. 1 U2 4 U
where for each j, ]21]-”:7 H2I% —5o—dK; and R, =— \/ﬁ/(; —&%dV.

Then we note that almost surely,
| Buall= | Bl = © (7).
Thus with Lemma 2, we may approximate /7 {9, (t,,t,) — 8(t;,t,)} as follows: for any 8
such as 283 < 1, with the notation that U, (t,t,) = vn{H, (t,t,) — H(t,, %) }and for each j,

1A 4t V. (v)
)=~ [ g+ | T )
we have almost surely,

vn S, (t,t,) — S(ty,t,)}
= 8ty ty) v {{In [ W, (t,)]— In [1/G; (¢,)]]+ [In [ W5, (t)] — In [1/G;, (2, )11 }
+ VniH, (t,t) — H(tptz)}/[Gl(tl G, (t)]+ 0 (n?)

—S(tptz)[‘“ ") e () H(tl fV‘" u)dﬁﬁ(u)}

o H(u)
Uy (v)
—I-S(tptz)[_/o I{g(v)dK( v) + H(tz) +~/ HZ(U) )}

Un (tlf t2 )
H(tl; t2)
)

= S(t, )2, () + 2y, (t,) + U, (ty, ty) /H(t,, 1)+ O (n77). (3.3)

+ Sty ty) +0 (n*?)

Now we state our main result of this section. For this, we need more notation for the

expression of covariance function of the limiting process. In the sequel, 7} is the maximum
observation in the jth component and a Ab= min {a,b} and a Vb= max{a,b}. Also let

Ky (ty,ty) = P{T}, < t), Tyy > ty, 61y = 0}, Ky (t, ty) = P{Ty; > t;, T < 15,60, =0}

and K(t,t,) = P{Ty < 1,61 =0,T}5 < ty, 05 = 0}.

Theorem 2. If H(T,, T;) > 0, then /n{S,(t,,t,) — S(t,t;)} converges weakly to a normal
process S(ty,t,){Z, (t,) + Z,(t,) + U(t,, t,)/H(t;,t,)} with O mean vector and covariance
function o®(t,t,), where Z;(t;) is the limiting process of Z, (t;) for each j, j=1,2 and
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_ 1-Htyt)  [adE @)  [tdE @)
oz(tptz)—nsﬁ(tptz){ Hiy ) +/0 7 w) +‘/0 ]152('0)}

+ 8% (t,t,){A+ B+ C+ D+ E+ F+ G+ H+ I}
with

4 4 H(u,v) — H (u)H (v)
A=a [ [ AR (A ),

B= m‘(ﬂ‘ K, 1) - K (6) K ()},

o [t [e K v) — K (u) K ()
0__2£ ‘/0 2 fg(v) df[l(u)dﬁé('v),

_ %m A 4,
« ol Hluw(v)
E——2/ / e 0]
_ “ kg, tl,v)—fq(tl)ﬂxv)
P~ ] g
ftthl,v) () K ()
Hi(tl) H:(v)

H_—zf ftzfﬁo(“)”)u)flfg(?)fé(v)

dK; (u),

dH,(v),

dH; (u)dE, (v),

0 K(u,ty) — K (u) K ()
~ &0 / 2 w) i (w).

Proof. First of all, we note that U, (#,t,) converges weakly to a two-dimensional -time
normal process Uf(t;,t,) (cf. Campbell 1982) with mean (0,0) and covariance function
Cov{U(sy, s;), Ulty, ty)}= H(s; Vg, 8,V ty) — H(sy, 85 )H(ty, ty).
Also for each j, it is obvious that Vj,(¢;) converges weakly to a normal process V;(t;) with
mean O and covariance function
Cov{V;(s;), V;(t;)}= K;(s;\t;) — K;(s;) K (2;).

Therefore from the decomposition (3.3), we see the result. The derivation of the covariance
function will be postponed until the Appendix.
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4. An Example and Discussion

In order to illustrate our procedure and compare with other method, we show an example
using the following artificial bivariate data in Hougaard (2000).

<Table 1> Artificial data (+ means censored component)

variables| 1 2 3 4 5 6 7
X 1 1 1 3 6+ | 7+ | 7+
X, 4 5 8 4 5 5 7+

First of all, we consider obtaining the Dabrowska’s (1988) estimate. For this purpose, let

tlf t2 21 il = tl) 2 = )

1=1

be the bivariate risk set. Also we need the following three types of bivariate events:

M:

My (4,t,) = 0100l (Ty = t;, Ty =t,)

1

-,
I
—

Mz

]‘410 (tl: t2) 5111( Ty = ty, T‘2 = t2)

12

I
—

3

My, (tl; ty) = 2512]( Thzt, Th= t2)~

=
Finally, we define the following three quantities:
Ly (¢, ty) = M (t,, 2 )/R (t,t,)
Ly (tl: ty ) = My, (t;, ty )/R (tv ty)
Ly, (t, ty) = My, (tl’ ty )/R (t1, ty ).

Then one may obtain the Dabrowska's (1988) estimate for the bivariate survival function as
follows:

Sn(t17t2):§ln(tl)g2n(t2) H [1—Q(U7U)]7
O<u<t,0<v<t,
where § in (tj) is the Kaplan-Meier estimate of the jth component and @Q(u,v) is defined as

Llo(u ’U)Lm(u; ) Lu(u ”)
QUuv) =7 (a0 — Ly (4, 0)]

For the calculation, we follow the tradition that 0/0 = 0. For the proposed estimate, all we
have to do is that we obtain the bivariate empirical survival function, H,(t,t,), and two
reciprocals of marginal survival functions, Wj,(t;) and W,,(t;). Then the two estimates for

the bivariate survival function are summarized in Table 2.
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<Table 2> Two estimates of bivariate survival function

(0,0) 14)] 45 (1,8) (34) | 6+5) | (7+5) | (7T+,7+)
Dabrowska estimate 1 0.429 | 0.343 0 0.429 | 0.343 0.343 0.343
Proposed estimate 1 0.429 | 0.143 0 0.429 | 0.190 0 0

As illustrated in the above example, the proposed estimate is easy to calculate from data as
well as easy to understand even though the extra assumption of independence between two
components of the censoring vector is required. However because of the intrinsic structure of
our estimate, the monotonicity of S, cannot be guaranteed (cf. Pruitt, 1991). Also we note that
when no censoring occurs, S, becomes the usual empirical survival function. Therefore our
estimate may be used as a complementary one until the advent of better estimate of survival
function.

The comparison between the proposed estimate with Dabrowska’s might have been carried
out through simulation study. However even for the bivariate case, only the bivariate normal
distribution can generate pseudo-random vectors in any available software. Also the ambiguity
of order among pseudo-random vectors and the difficulty of calculation of volumes of
pseudo-random vectors for the use of distribution or survival function prohibit us from the
simulation study.

Already we noted that W,

n 18 a consistent estimate of 1/Gj. Also we might have used the

Kaplan-Meier estimate for G] obtained by switching the roles of the life time and censoring

random variables. However when the largest observation is censored, the Kapaln—-Meier
estimate becomes 0 at the largest observation. Then we can not use this value as the
denominator because in the expression of (2.1), the reciprocal forms of G'j’s are used.

Therefore we have followed the approach of the Susarla-Van Ryzin estimate instead of that
of Kaplan-Meier estimate.

We have assumed that two bivariate survival functions of life time and censoring random
vectors are continuous for the derivation of the weak convergence. However we may
generalize our estimate for the discrete case when we deal with the weak convergence by
spreading the jumps of the underlying distributions uniformly over small intervals inserted at
each jump point. For technical treatments for this problem, you may refer to Shorack and
Wellner (1986).

The extension to the multivariate data is obvious and straightforward with the assumption
that all the components of the censoring vector are mutually independent. As an example, in
case of the p-variate problem, (2.1) becomes

S(tl:"';tp) = H(tu"‘:tp)/{Gl (tl) Gp (tp)}'
Thus all we need to obtain the estimate for S(tl,"-,tp) are the terms of the empirical
survival function with the p number of estimates of the reciprocal forms of survival functions
for censoring vector. Then the asymptotic properties for the p-variate S, can be easily

derived such as the consistency and the weak convergence with variance function.
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Appendix

We proceed to derive the asymptotic variance by identifying the terms of the univariate
case in Susarla and Van Ryzin (1978). For this matter, we need the following lemma.

Lemma 3. For any % =< t; and v < t,, we have that
Ty > t, Ty > t,) (T > u) = I(Ty > t, Ty > ty)
and KTy >t, Ty >t I(Te>v) =I(Ty > ty, Ty > ty).

First of all, we the following results with Lemma 3.

_ ' Ui (u) Uty t,)
(1) 2@0{ e )dK( w), H(tbtz)}

_ h Uy (u) Uty ty)
- m’”{ s 2w B T, 5) }

2 H() 1~ B W)
~Hg )f df ()

)
4w
o[ G e

U (u) Ut)
= QCZ)U{ HQ( )d[(i(u),ml—)}

Also with similar arguments for (1) with integration by parts we have

Vi (u) t W) oy G
2) 20w , < 2 s 3
@ { () A Htl,tz)}‘ { w7
Also we have

Vilt) Ult,ty) Vin(t) U,(t,8)) Vi(t,) U)
@ 20"”{111@1) : H(tl,m}:w"”{ HG) " B h) }‘ 20"“{14@1)’ H(m}'

Also we note that Var{Z (t,)} are exactly the same as those from (5) to (10) in Susarla and
Van Ryzin (1978). Then by adding them, we obtain that
Ut t, tdei(u)
Var {4 (t,) 120014 (), =72 } /
Gler2eia6) gk [
Also for Var{Z,(t,)H+2Cov{Z(t,), U(t,t,)/H(t,t,)}, with the same arguments used for
Var{Z, (t, )+ 2Cov{Z, (t,), U(t,, t,)/H(t,,t,)}, we obtain that




792 Hyo-1l Park and Jong-Hwa Na

Var{Z, (@}+2%{5 (E);% — 0"2 d];[g((:)) '

It is easy to see that
Uty t,) Un (t, t2 _1-H(,, t2
H(t,t) [ H(tl t) H(t,t,)
Finally for 2Cov{Z (t,), Z,(t,)}, we obtain the following 8 terms (from A to 1)

. W U (u) t U (v)
& 2G7v{ )dKl(u)f ()cug( )}

B H
s O (U (), Uy )}
2/[ Hg(u)}g dK; (u)dE; (v)

o[8[ Hluw) — B (u) H (v)
_2/ / FaEe), W),

since Cov {Uy, (u), Up, (v)}= H(u,v) — Hy (u) By (v).

| Vt) Vi) Viet)  Viulty)
B 20"”{111@1)’fum}‘“"”{fwl)' fawz)}

= Eﬁ(t—lfﬂé@—)— {K(tl;tz) - ](1 (tl )I(Z (tz)}

“ %)
), "o

_ f t V3, ()
=20n{ [y i), Sy

o[ [ K0
-2 [ A ML)

_ V(&)
b 2@0{ 72 de(“) (tz)}
N fé(tz)f H?() a6 (u)
U% wh)—HWKG) .o
since va{[jln( ) Voo (t2)}= I(zo(u ty) — Hy (u)K; (t,).

4 ) 5 V(o)
2 _zaw{oﬂlg(u) ), [ dba(v)}
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P W Vlo)
m’”{o Ty S [ )}

:—Q/tlftl]g()(u};) U)ZZ(Z;))]Q(U) dl({(u)d% (1))

P ~2®v{£§2 tzg((v)dké( )}
262711{ t2 D;" (v)}
2 tzaw{ (t) Uzn(v)}
= H(tl)f oy W)
— 2 5}(10(151;71)‘]{1@1)]{2(”)
"_fﬁ(tl)fo ) Ak w)

since Cov {Vy,, (4,), U, (v)}= Ky (t,v) — K, (t,)Hy (v).
' Vit,) 1t V()

G 26&;{}[@1 f DR )}
"QG’”{HH@J’ . fg(v)d’%(”)}
__ 2 /“f(tpv)~f(1(t1)f€(v)

Ht)J, H ()
t U (v)

iE ), [ )}
STy

—af" f@fq()(u};)( )2 2 W)

. Vi (u) V5 (t)
g G’”{ H"( )dH( ul ba@a)}

{/ Hg(u Vin tz))}

dH;(v).

e

t Vi (u)

i _zaw{
0

dH, (u)dA, (v).
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