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Abstract
High-dimensional survival data with large numbers of predictors has become more common. The analysis

of such data can be facilitated if the dimensions of predictors are adequately reduced. Recent studies show that
a method called sliced inverse regression (SIR) is an effective dimension reduction tool in high-dimensional sur-
vival regression. However, it faces incapability in implementation due to a double categorization procedure. This
problem can be overcome in the right-censoring type by transforming the observed survival time and censoring
status into a single variable. This provides more flexibility in the categorization, so the applicability of SIR can
be enhanced. Numerical studies show that the proposed transforming approach is equally good to (or even better)
than the usual SIR application in both balanced and highly-unbalanced censoring status. The real data example
also confirms its practical usefulness, so the proposed approach should be an effective and valuable addition to
usual statistical practitioners.

Keywords: bivariate slicing, right-censored data, sliced inverse regression, sufficient dimension
reduction, survival regression, transformation method, unbalanced censoring status

1. Introduction

Survival regression is a study of the conditional distribution of a true survival time T given a set
of predictors, saying X ∈ Rp = (X1, . . . , Xp)T. A direct regression analysis of T |X is not possible
since the survival time T cannot be fully observed due to the censoring of T . A most popular one
among many types of censoring should be right-censoring which takes min(T,C) as observations of
T , where a variable C indicates a censoring variable. In the right censoring scheme, the observed data
of (Yi, δi,Xi), i = 1, . . . , n, are assumed as n iid realizations of (T,C,X), where Y = Tδ + C(1 − δ),
δ = 0, 1 is an indicator variable with δ(C≥T ) = 1. That is, δi = 0 means that a censoring occurs to the
ith subject, so the observed survival time is a possible value of C, not T . Hereafter, Y and δ are called
observed survival time and censoring status, respectively. These data are typically used for survival
regression.

In survival regression of T |X, two popular statistical approaches among many should be the Cox
proportional Hazards (CPH) model and the accelerated failure time (AFT) model. The CPH model
has a long history and is semi-parametric due to no requirement of specific distributions of T . In
the CPH model, the unknown regression coefficients are estimated based on the likelihood partially
constructed by the ordered non-censored observed survival time. After fitting the model, the survival
time is indirectly interpreted through hazards ratios. The AFT model assumes specific distributions for
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T , so it construct the full-likelihood from the data to estimate unknown regression coefficients. One
advantageous aspect of the AFT model should be the direct interpretation of survival time. However,
the optimization of the likelihood in the AFT model is often computationally intensive. For more
about the CPH and AFT models, read (Kleinbaum and Klein, 2005).

High-dimensional survival data with large numbers of predictors has become more common. In
such cases, the two popular approaches may suffer from the curse of dimensionality. Often, high-
dimensional regression analysis can be facilitated, if the dimensions of predictors are adequately re-
duced. Here, we consider a sufficient dimension reduction methodology called sliced inverse regres-
sion (SIR; Li, 1991) to reduce the dimension of predictors. SIR replaces the original p-dimensional
predictor with d-dimensional linearly transformed predictors ηTX without loss of information on T |X,
where η is a p × d matrix. Equivalently, SIR pursues to find η such that

FT |X(·) = FT |ηTX(·), (1.1)

where F(·) stands for a distribution function.
There are several advantages of SIR as a dimension reduction tool in survival regression. First,

SIR does not require certain parametric distribution for T |X, so it can be applicable to both CPH
and AFT models. Second, unlike many local nonparametric methodologies, SIR can often avoid the
curse of dimensionality because its estimate converges at the usual

√
n rate. Third, SIR is easily

implemented in practice with dr-package in R. In the later section, SIR and its applicability to survival
regression will be discussed in further detail. For more about sufficient dimension reduction and their
methodologies (including SIR), read Yoo (2016a, 2016b).

A categorization of a response variable (slicing) should be done to implement SIR in practice.
Using SIR in survival regression, slicing Y and δ is the key step, so that the observed survival time
Y is categorized within each level of the censoring status δ. Bivariate slicing should be problematic
in practice when δ is heavily unbalanced. Few (or no observations) in at least one slice result in no
implementation of SIR. This problem can be relaxed by transforming Y and δ into one-dimensional
variable when the survival time is right-censored. The transformed variable can provide more flexi-
bility in slicing, so SIR can be implemented despite a heavy imbalance in censoring. We consider two
approaches for the transformation as suggested in Datta et al. (2007). Hereafter, the categorization of
the transformed observed survival time will be called transformed slicing.

This paper conducts a comparison study of SIR applications with original bivariate slicing and
transformed slicing. The applicability of SIR to survival regression can be enhanced if the latter will
give equally good or better results than the former. This enables a usual statistical practitioner to con-
duct a proper dimension reduction in a high-dimensional survival regression with heavily imbalanced
censoring status; therefore, the analysis can be facilitated with dimension reduced predictors.

The organization of the paper is as follows. In Section 2, SIR in survival regression and two
transformation methods are discussed. Section 3 is devoted to presenting numerical studies for the
performances of SIR for CPH and AFT models with two different censoring rates and real data anal-
ysis. In Section 4, we summarize our work.

2. Sliced inverse regression and transformation methods

2.1. Sliced inverse regression in survival regression

Consider a survival regression of T |X with right-censoring. For notational convenience, we define
S(M) and as a subspace spanned by the columns of M ∈ Rp×q and statistical independence,
respectively.
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SIR (Li, 1991) constructs a subspace S{E(X|T )}, which is a subspace spanned by the inverse mean
E(X|T ) with varying T . SIR estimates η to satisfy statement (1.1) through E(X|T ). The estimation of
η through SIR is:

(a) Divide the observed range of T into h slices J j, if T is many-valued or continuous. If T is
categorical, each category is a slice.

(b) Compute the sample means within each slice, X̄ j = (1/n j)
∑

Ti∈J j
Xi, j = 1, . . . , h, where n j is the

number of observations within J j.

(c) M̂ =
∑h

j=1 f j(X̄ j − X̄)(X̄ j − X̄)T, where f j = n j/n.

(d) Then M̂ is spectral-decomposed such that M̂ =
∑p

i=1 λ̂im̂im̂T
i with λ̂1 ≥ λ̂2 · · · λ̂p ≥ 0.

(e) The matrix η is estimated by Σ̂
−1

(m̂1, . . . , m̂d), where Σ̂ is usual moment estimator of cov(X).

Li et al. (1999) and Cook (2003) investigate the applicability of SIR to survival regression with
(Y,C,X). Li et al. (1999) discuss that the direct application of SIR based on slices of Y potentially
introduces bias in dimension reduction due to censoring. According Li and his associates, if a condi-
tion of C (X,T ) holds, the bias is eliminated, but the condition is too restricted in practice. In order
for SIR to work properly under a more general censoring condition of C T |X, a bivariate slicing of
Y and δ to categorize Y within each level of δ is suggested.

According to Cook (2003), the bivariate slicing can work in survival regression under a more
general condition C X|(ηTX,T ). This condition enables the use of a plausible regression model
to estimate η. Let γ be matrices to satisfy F(T,C)|X(·) = F(T,C)|γTX(·). Then the condition forces that
F(T,C)|γTX(·) = F(T,C)|ηTX(·). Since (Y, δ) is a function of (T,C), it follows immediately that

FY,δ|X(·) = FY,δ|ηTX(·). (2.1)

SIR-application for survival regression can be done with bivariate responses of (Y, δ)|X. This approach
requires bivariate slicing of (Y, δ) discussed above.

2.2. Transformation methods

In this subsection, we discuss two transformation methods for right-censored survival data as sug-
gested in Datta et al. (2007).

Method 1 (reweighting): The method is based on inverse probability of censoring weighted estima-
tion (Robins and Finkelstein, 2000; Robins and Rotnitzky, 1992; Satten and Datta, 2001; Satten et al.,
2001).

Let S c(t) denote the survival function of the censoring variable C. As long as a condition of
C (T,X) holds, it can be estimated by the Kaplan-Meier estimator

Ŝ c(t) =
∏
τ(i)≤t

{
1 −
∆Nc(τ(i))

R(τ(i))

}
, (2.2)

where τ(1) < · · · < τ(m) are the distinct ordered censored lifetimes, ∆Nc(τ(i)) is the number of censored
observations at time τ(i), T c

i stands for the observed censored time and R(τ(i)) = #{ j : T c
j ≥ τ(i)} counts

the number of individuals at risk of failing just before time τ(i).



262 Jae Keun Yoo, Sung-Jin Kim, Bi-Seul Seo, Hyejung Shin, Su-Ah Sim

Under this scenario, the unobserved Yi is replaced by 0. To compensate for this, the observed Yi is
reweighed by the reciprocal of the probability that it corresponds to an uncensored observation. Math-
ematically, we have Ỹi = δi log(T c

i )/Ŝ c(T c
i −), where ‘–’ denotes a left limit. It should be noted that Ỹ

is constructed from observed data, because According to Koul et al. (1981), E(Ỹi|X) is approximately
equal to E(Yi|X). Method 1 replaces pairs of (Yi, δi) by Ỹi.

Method 2 (mean imputation): According to Datta (2005), the usual moment-based sample mean
is an inconsistent and asymptotically biased estimator due to right censoring. To relax this problem,
Datta (2005) suggests a computation of the sample mean in the usual way by imputing the censored
values. In method 2, the censored survival times are imputed by following the guidance in Datta
(2005), which is discussed below in detail. So, the observed Yi is kept intact in method 2, while
unobserved Yi values are replaced by its expected value given that the observed failure time Ti was
larger than T c

i . The Kaplan-Meier curve of the survival function of T can provide its estimate as:

Y∗i = Ŝ c (
T c

i
)−1 ∑

τ( j)>T c
i

log τ( j)∆Ŝ τ( j) ,

where Ŝ stands for the Kaplan-Meier estimator with the roles of δ and 1 − δ exchanged in (2.2) and
∆Ŝ τ( j) is the jump size of Ŝ at time τ( j).

In this computation, the largest event time τm is chosen as a true failure, although δm = 0. This
allows τ(m) to be the largest mass point of the estimated survival curve. In this scheme, we replace
each censored observation by its estimated conditional expectation given that the true failure was a
value that exceeded the censored observation. Thus, in method 2, pairs of (Yi, δi) are replaced by Ỹi

such that Ỹi = Yi, if δi = 1, and Ỹi = Y∗i , if δi = 0.

3. Numerical studies and real data application

3.1. Numerical studies

We consider two survival regressions of CPH and AFT models. For both models, the predictors of
X = (X1, . . . , Xp)T were independently generated from N(0, 1), p = 10, 40, 70, 100, 130, and one
linear combination of ηTX was considered, where the first p/2 coefficients of η are (p/10) replicates
of η0 = (1, 2, 3, 4, 5) and its last (p/2) coefficients are all zeros. For example, for p = 40, we have
η = (η0, η0, η0, η0, 0, 0, . . . , 0)T.

Under this predictor configurations, an AFT model was generated following the model in Section 5
of Datta et al. (2007) such that T |X iid∼ exp(ηTX+ε), where a random error εwas sampled from N(0, 1)
independently of X. That is, under this setup, T |X follows log-normal distribution. A censoring
variable C was sampled from log-normal distribution exp{N(c0

√
2, 2)}.

A CPH model was simulated by mimicking one in Section 4.2 of Yoo and Lee (2011). The model
was generated with a hazard rate λ = exp(ηTX) and a baseline hazard rate λ0 equal to 1. A censoring
time C was sampled from Uniform(0, c0) independently of X.

For the AFT and CPH models, c0 was chosen to have 10% and 70% average censoring percent-
ages. In the AFT model, c0 = 1.81 and c0 = −0.71 were selected for 10% and 70% censoring,
respectively, while c0 = 14.8 and c0 = 0.61 were used for 10% and 70% censoring, respectively in
the CPH model. The total number of iterations were 500 and the sample size n was fixed at 200. The
sample size n = 200 was used to provide adequate observation for SIR implementation with bivariate
slicing with 10% censoring.
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(a) 10% censoring: Transformation method 1
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(b) 10% censoring: Transformation method 2

Numbers of Predictors

A
ve
ra
ge
s
of

C
or
re
la
ti
on

10 40 70 100 130

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1

(c) 70% censoring: Transformation method 1
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(d) 70% censoring: Transformation method 2

Figure 1: Direction estimation for accelerated failure time (AFT) model in Section 3.1 (black: B4; red: B6; blue:
T (•)

3 ; magenta: T (•)
4 ; green: T (•)

5 ; cyan: T (•)
6 ).

Two popular types of the survival regression of the CPH and AFT models were considered with
p = 10, 40, 70, 100, 130 under two different censoring percentages of 10% and 70%. It is expected
that the transformation methods would produce better estimate results in 10% (which is highly unbal-
anced), than the usual bivariate slicing; however, the latter should be better (or equally good) to the
transformation methods.

To summarize the numerical studies, the averages of absolute correlation coefficients between ηTX
and η̂TX were computed, which are reported in Figures 1 and 2. The estimate η̂ were obtained from
bivariate slicing with 4 and 6 slices, two transforming slicing schemes with 3, 4, 5 and 6 slices. If the
averages are closed to one, it estimates η well. The true dimension of S(η) is equal to one; therefore,
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(a) 10% censoring: Transformation method 1
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(b) 10% censoring: Transformation method 2
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(c) 70% censoring: Transformation method 1
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(d) 70% censoring: Transformation method 2

Figure 2: Direction estimation for Cox proportional hazards (CPH) model in Section 3.1 (black: B4; red: B6;
blue: T (•)

3 ; magenta: T (•)
4 ; green: T (•)

5 ; cyan: T (•)
6 ).

the percentages of dimension determination of d̂ = 1 with level 5% were computed and reported in
Tables 1–4. The percentages close to 95% indicates good estimation of the dimension.

In Figures 1, 2 and Tables 1–4, the notation of BK , K = 4, 6, “B” and K represent SIR application
of bivariate slicing of the censoring status and observed survival time and the number of slices, respec-
tively. A notation of T (I)

J , I = 1, 2 and J = 3, 4, 5, 6 also stands for SIR application with transforming
slicing, where “I” and “J” represent a type of the methods and the numbers of slices, respectively. For
example, B4 means the bivariate slicing SIR application with 4 slices, and T (2)

3 does the transforming
SIR application via the method 2 with 3 slices.

According to Figures 1 and 2, with both 10% and 70% censoring, the performances to estimate
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Table 1: Percentages of d̂ = 1 for AFT model with 10% censoring in Section 3.1

p B4 B6 T (1)
3 T (1)

4 T (1)
5 T (1)

6 T (2)
3 T (2)

4 T (2)
5 T (2)

6
10 95.8 93.6 93.0 93.4 93.2 91.2 93.2 92.0 93.0 93.2
40 70.4 54.4 69.0 65.2 55.2 47.2 65.6 61.8 61.4 55.2
70 36.4 29.0 35.8 32.8 31.6 25.4 36.0 32.4 32.8 28.6

100 12.0 8.4 13.0 10.2 7.2 6.0 9.6 12.4 11.6 7.8
130 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2

Table 2: Percentages of d̂ = 1 for AFT model with 70% censoring in Section 3.1

p B4 B6 T (1)
3 T (1)

4 T (1)
5 T (1)

6 T (2)
3 T (2)

4 T (2)
5 T (2)

6
10 95.4 96.0 96.6 95.2 94.4 95.6 92.6 96.0 95.2 96.4
40 93.0 93.0 95.4 95.0 92.2 87.4 93.2 95.8 96.8 94.0
70 68.8 61.8 81.2 74.6 67.6 62.2 93.4 87.2 78.8 73.4

100 34.2 31.4 43.2 37.4 33.2 26.6 64.4 54.2 40.2 38.2
130 10.2 8.2 9.6 8.6 7.6 6.8 19.2 14.2 11.0 9.2

Table 3: Percentages of d̂ = 1 for CPH model with 10% censoring in Section 3.1

p B4 B6 T (1)
3 T (1)

4 T (1)
5 T (1)

6 T (2)
3 T (2)

4 T (2)
5 T (2)

6
10 96.0 94.4 96.4 95.6 95.0 95.6 96.6 94.8 94.4 96.4
40 96.4 97.2 94.6 95.4 95.2 96.2 93.0 95.8 97.8 97.0
70 98.4 98.0 96.2 98.0 97.8 97.6 91.2 98.8 98.0 97.2

100 98.8 89.2 94.2 94.6 96.8 97.0 88.4 98.6 95.6 94.4
130 70.8 44.2 55.8 62.6 58.2 58.4 69.2 79.2 62.4 55.6

Table 4: Percentages of d̂ = 1 for CPH model with 70% censoring in Section 3.1

p B4 B6 T (1)
3 T (1)

4 T (1)
5 T (1)

6 T (2)
3 T (2)

4 T (2)
5 T (2)

6
10 95.6 96.2 95.2 95.6 96.2 93.8 93.4 94.0 97.2 95.8
40 97.4 97.2 96.2 97.0 96.4 97.0 86.0 97.4 96.8 97.8
70 96.6 97.0 96.6 97.2 97.4 97.4 81.4 97.6 96.4 96.4
100 98.6 88.2 99.0 97.4 94.6 93.6 78.0 97.8 97.2 93.2
130 68.4 39.2 91.8 72.2 59.8 52.0 53.4 76.2 58.2 52.8

η via the two transforming slicing schemes are similar in both the AFT and CPH models; however,
the method 2 produced slightly better results than method 1 in most cases. For the CPH and AFT
models with 10% censoring, T (•)

6 yields the best results among the others, and T (•)
4 shows good

performance. With 70% censoring, the two transformation slicing schemes, especially T (•)
3 and T (•)

4 ,
are equally good to bivariate slicing; however, the latter is slightly better than the former. This meets
our expectation, so the transformation slicing is shown to be good alternatives to bivariate slicing in
dimension reduction in survival regression.

For the dimension estimation, Tables 1–4 show that the transformation slicing produces at least
equally good or even better results than bivariate slicing. In the AFT model, T (1)

3 and T (2)
3 result in

reliable dimension estimation. For the CPH model, under 10% censoring, T (1)
4 and T (2)

4 are better
than the others, while T (1)

3 and T (2)
4 are good.

3.2. Real data example: primary biliary cirrhosis data

For illustration purposes, the data commonly used in Tibshirani (1997) and Yoo and Lee (2011) was
considered. The data was on primary biliary cirrhosis (PBC), which were collected at the Mayo Clinic
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Table 5: p-values for the dimension estimation of primary biliary cirrhosis data in Section 3.2

H0 B4 B6 T (1)
3 T (1)

4 T (1)
5 T (1)

6 T (2)3 T (2)4 T (2)5 T (2)6
d = 0 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
d = 1 0.00 0.00 0.73 0.82 0.91 0.91 0.07 0.09 0.01 0.00
d = 2 0.01 0.00 N/A 0.85 0.99 0.99 N/A 0.45 0.27 0.08
d = 3 N/A 0.26 N/A N/A 0.97 0.99 N/A N/A 0.97 0.89

Decision d̂ > 2 d̂ = 3 d̂ = 1 d̂ = 1 d̂ = 1 d̂ = 1 d̂ = 1 d̂ = 1 d̂ = 2 d̂ = 2

between 1974 and 1986. The data consists of 19 variables with 276 observations after removing all
missing values. The variables used in the analysis are: Y = the number of days between registration
and the earlier of death or censoring; δ = 1, if Y is time to death; 0 otherwise; X1 Treatment code:
1 = D-penicillamine, 2 = placebo; X2 Age in years; X3 Gender: 0 = male, 1 = female; X4 Presence
of ascites: absent = 0 or present = 1; X5 Presence of hepatomegaly: absent = 0 or present = 1;
X6 Presence of spiders: 0 = no or 1 = yes; X7 Presence of edema: absent and no diuretic therapy
= 0, present but no diuretic therapy or edema resolved by diuretics = 0.5 or present despite diuretic
therapy = 1; X8 Serum bilirubin, in mg/dL; X9 Serum cholesterol, in mg/dL; X10 Albumin, in g/dL; X11
Urine copper, in µg/day; X12 Alkaline phosphatase, in U/L; X13 SGOT, in U/mL; X14 Triglycerides,
in mg/dL; X15 Platelet count; coded value is number of platelets per cubic mL of blood divided by
1,000; X16 Prothrombin time, in seconds; X17 Histologic state of disease, graded 1, 2, 3, or 4.

Yoo and Lee (2011) did the application of SIR and ordinary least squares to the PBC data for
model-free predictor test. In Tibshirani (1997), the data was successfully fitted with the CPH model
with 17 predictors. We considered SIR application with the bivariate slicing with 4 and 6 slices and
the two transformation slicing schemes with 3, 4, 5, 6 slices.

First, Table 5 shows the p-values for the dimension estimation obtained from SIR implementation
with dr-package in R. According to the table, B4 and B6 estimate the dimension as three or possibly
larger. However, all T (1)

• , T (2)
3 and T (2)

4 determine d̂ = 1, while T (2)
5 and T (2)

6 do d̂ = 2. According
to numerical studies, T (1)

3 , T (1)
4 , T (2)

3 , and T (2)
4 showed better dimension estimations. Following this

guidance, it is concluded that d̂ = 1. This indicates that the usual bivariate slicing overestimates
the true dimension. Therefore, the consideration of the transformation slicing relaxes the potential
complexity in dimension reduction. This proves the usefulness of the proposed transforming slicing
in practice.

Next, the scatter plot matrix of all the estimates η̂TX from SIR applications are presented in Figure
3. According to the figure, B•s and T (2)

• s yield the highly-correlated estimates, while T (1)
• s provide

a different one. Combining this with the dimension estimation results, either T (2)
3 or T (2)

4 should be
preferred over others. Their correlations with the CPH fit are 0.96 and 0.98, respectively, and confirms
that the dimension reduction using the transformation methods would be successful in practice.

4. Conclusion

High-dimensional survival data with large numbers of predictors is more common and the direct ap-
plication of the two popular statistical approaches of AFT model and CPH model may face and suffer
from the curse of dimensionality. The analysis of such data can be facilitated if the dimensions of
predictors are adequately reduced. Recent studies show SIR (Li, 1991). SIR requires the categoriza-
tion (slicing) of the observed survival time within each level of the censoring status. For example,
some categories may have inadequate observations to implement SIR in a case of highly-unbalanced
censoring. This problem can be overcome in the right-censoring type by transforming the observed
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Figure 3: Scatterplot matrix of η̂TX from various sliced inverse regression application for the primary biliary
cirrhosis data in Section 3.2.

survival time and censoring status into a single variable. The applicability of SIR can be enhanced
because it provides more flexibility in the categorization. For the transformation method, we adopted
two approaches suggested in Datta et al. (2007).

Numerical studies indicate that the two transformation slicing schemes are equally good to (or
even better) than usual bivariate slicing in dimension reduction in both balanced and highly-unbalanced
censoring status. The real data example also confirms its practical usefulness; therefore, the proposed
approach should be an effective and valuable addition to usual statistical practitioners.

The proposed approach is restricted in right-censoring type survival data; however, SIR applica-
tion of the bivariate slicing does not have this restriction and remains a possible shortcoming of the
proposed approach. The research for a transformation approach with interval and left censoring types
is in progress. SIR can be implemented with dr-package in R, and the two transformation methods
will be available on the webpage of the author, http://home.ewha.ac.kr/∼yjkstat/transformat ion.txt.
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