• Title/Summary/Keyword: Cement-Mixed Soil

Search Result 115, Processing Time 0.03 seconds

Characterization of Flowable Fill with Ferro-Nickel Slag Dust (페로니켈 슬래그 미분말을 이용한 유동성 뒤채움재 특성)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.16-21
    • /
    • 2017
  • The aim of this study was to utilize ferronickel slag produced in the manufacture of stainless steel as a flowable backfill material for underground use using crushed fine powder. Experimental combinations were made using two components: Case A (sand) and Case B (soil). The optimal mixing ratio of Case A was sand (58.4%), ferronickel slag fine powder (21.6%), cement (1.8%), and water (18.2%). In the case of B, the optimal mixing ratio was determined to be soil (53.0%), ferronickel slag fine powder (20.0%), cement (1.7%), and water (25.3%). The uniaxial compressive strength of case A, which is a mixture of ordinary sand and ferronickel slag powder, was relatively larger than that of case B using soil. In addition, the strength of the specimen increased with increasing curing time. The uniaxial compressive strength tended to increase with increasing curing time. In addition, the unconfined compression strength of the fluid backfill material using common sand as the main material was relatively larger than that of the mixed material using soil as the main material. In case A, the uniaxial compressive strength ranged from 0.17-0.33 MPa, 0.21-0.39 MPa, and 0.19-0.40 MPa, respectively, at curing times of 7, 14, and 28 days. From the experimental results, it was concluded that the ratio of FNS powder and cement mixture was the most appropriate for Case A3. Case B, which used soil as the main material, showed a similar tendency to Case A. As a result of the dissolution test for evaluating the environmental harm of the FNS fine powder, there was no dissolution of substances harmful to the environment.

Variation of Hydrological Characteristics of Soils Mixed with Industrial By-products by Pilot-Test (현장 Pilot실험을 통한 산업부산물 혼합토의 수리학적 특성 변화)

  • Yu, Chan;Yoon, Sung-Wook;Baek, Seung-Hwan;Park, Jin-Chul;Lee, Jung-Hun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1655-1665
    • /
    • 2008
  • In order to investigate the applicability and suitability of the industrial by-products to landfill final cover, field pilot-scale lysimeter experiments were carried out. The mixture of loamy soil, bottom ash, and construction waste was placed as a cover material in lysimeter($2m{\times}6m{\times}1.2m$) which were constructed with cement brick, and then, volumetric water contents, pF value, and the quantity of runoff and seepage of treatment boxes filled with the mixture of loamy soil and the industrial by-products were monitored from July, 2007 to February, 2008. As a result, the case containing the mixture of bottom ash and loamy soil was most effective in engineering and hydrological properties and water retention ability.

  • PDF

Convergent Study on the Preparation of Sludge Modified Soils of Inorganic Consolidation Soil (무기계고화재의 슬러지 개량토 제조에 관한 융합연구)

  • Han, Doo Hee
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.2
    • /
    • pp.157-162
    • /
    • 2017
  • Inorganic stiffening agents were prepared by mixing paper sludge incineration ash, blast furnace slag fine powder quicklime, anhydrous gypsum and fly ash. The main components of the solidifying agent developed for sludge treatment were SiO, $Al_2O_3$, $TiO_2$, $Fe_2O_3$, $Mn_2O_3$, CaO, MgO, $Na_2O$, $K_2O$, $P_2O$, and $SO_3$. Unlike cement, the developed solidifying agent did not contain $Cr^{6+}$, which is known as a carcinogen. Heavy metals and oil contaminated soil were mixed with solidifying agent and cured for 7 days and the heavy metal content was below the environmental standard. Sewage sludge cake, food waste and solidifying agent were mixed with each other, and after 7 days curing, soil component test showed that the heavy metal content was below the environmental standard. After mixing the sludge, solidifying agent and additive mixture into the beaker, the ammonia concentration was measured to be 0 after 3 days.

A study of Geotechnical Property of Stone Filler and Sewage Dredged Soil as Construction Materials (하수준설토와 석분의 건설재료로 재활용을 위한 지반물성연구)

  • Chung, Jae-Wook;Jang, Yeon-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.8-15
    • /
    • 2007
  • Geotechnical and environmental properties of stone fillers are analyzed by several laboratory experiment to identify the possibility of recycling fillers and sewage dredged soils as construction materials. The result of geotechnjical test shows that the sewage dredged soil is a sandy soil which contains 70-80% sand and is useful as an aggregate of construction site. Stone filler has large fine content, which may disqualifies the use as construction materials. However, this material is still useful as a filler in stone quarries or finished mines. From the environmental test, the liquids leached from two types of materials have satisfied the standard of chemical substances in the soil environment law and no harmful effect in ground pollution is expected when recycling.

The Estimation of Optimal Mixing Ratio of CLSM Mixed with Red Mud and Paper Sludge Ash (Red mud와 제지회를 혼합한 CLSM의 적정 혼합비 산정)

  • Roh, Seongoh;Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.4
    • /
    • pp.21-27
    • /
    • 2022
  • Recently, numerous studies are being performed to examine alkali-activated cement which uses industrial by-products, such as GGBS and fly ash, as well as alkali activators. Alkali-activated cement is a type of binder that exerts the same strength as cement without using cement by mixing industrial by-products with alkali activators. Alkali activators, which are used mainly for carbon-reducing technologies and alkali activation, are expensive and difficult to apply in the field due to risks related to strong alkalinity. Therefore, this study intends to explore methods to use red mud as a substitute for an alkali activator. To that end, this study has evaluated engineering properties, such as flow and strength, of CLSM that uses red mud and paper sludge ash as binders and its possibility to cause soil pollution. This study also aims to present the appropriate mixing ratios of red mud and paper sludge ash to produce CLSM.

Analysis of Strength Characteristics for Lightweight Soils Using Recycled Material (폐기물을 첨가한 경량혼합토의 강도특성 분석)

  • Bae, Yoon-Shin
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.204-212
    • /
    • 2012
  • Lightweight soils are very economical and environment friendly materials that are valuable in field without wasting construction materials, dredged soils and clay/ silty soils during construction. Recently, the research of lightweight soils mixed with recycled material (recycled tire powder, rice husks) have been investigated. In this study the mix design factors (i.e., weight of soil, water content, foaming agent and added water) were analyzed and optimized mix design was suggested using cement content for revealing strength. For the analysis the stress-strain behavior, strength with respect to time, and experimental strength for the component of recycled material were analyzed. Finally, target strength was determined to calculate reasonable and economical mix ratio and the optimized cement content was suggested.

A Study on the ZnO Supported Silica Gel (ZnO가 담지된 실리카 겔 연구)

  • Kim, S.Y.;Kim, M.Y.;Ju, C.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.75-78
    • /
    • 2011
  • There are various types of materials used in electronic industry, such as electrode material, conductor, insulator, anode, cathode and semiconductor. Electrode material type is Cu, Ti, ZnO and so on. Especially if we use mixed ZnO in soil cement or silica gel, we can have advantages in ice road to prevent freezing. We have great impact if we use supported in inorganic substances like silica gel. In this paper we have studied that ZnO supported silica gel and its properties. Zinc acetate dissolved in distilled water were loaded on the silica gel by the reaction with ammonia at $80^{\circ}C$. And we investigated particle structures of ZnO by scanning electron microscopy(SEM) and X-ray diffraction(XRD).

Granulation of Artificial Zeolite for the Simultaneous Removal of Nitrogen and Phosphorous from the Wastewater (질소, 인 동시 제거용 입상 인공제올라이트 제조)

  • Lee, Deog-Bae;Lee, Kyeong-Bo;Han, Sang-Soo;Henmi, Teruo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.1
    • /
    • pp.67-71
    • /
    • 1998
  • This study was carried out to granulate artificial zeolite powder that remove ammonium nitrogen and phosphorous simultaneously in wastewater treatment. Optimum water content was required for 30 percent volume to granulate artificial zeolite with 1.7mm diameter and 1~2cm length using granulator. Portland cement could remove much $NH_4{^+}$ and $PO_4{^{3-}}$ from the wastewater than other binding materials. Mixed 33, 25. 20. 16 percent of portland cement to artificial zeolite powder(v/v), cation exchange capacity of the granulars were 66.5, 81.4, 126.8, $151.2cmol^+kg^{-1}$ and hardness of that were 176.1, 24.4, 4.1, $0.4kg\;cm^{-2}$, respectively. Content of portland cement in the granular were related with removal of $PO_4{^{3-}}$ positively and that of $NH_4{^+}$ negatively. Shaked 1g of the granulars that made of portland cement 33 percent with 40ml synthetic wastewater containing $NH_4{^+}$ $1545mgl^{-1}$ and $PO_4{^{3-}}$ $417mgl^{-1}$, 99.4 percent of $NH_4{^+}$ and 90.3 percent of $PO_4{^{3-}}$ were removed simultaneously after 48 hours shaking. The longer shaking, the more $NH_4{^+}$ and $PO_4{^{3-}}$were removed. The artificial zeolite granular had both micropore and macropore that could be useful in the wastewater purification.

  • PDF

Evaluation of Environmental Stability and Durability of Cementitious Mixed Soil (시멘트계 혼합토의 환경안정성 및 내구성 평가)

  • Oh, Sewook;Bae, Wooseok;Kim, Hongseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.9
    • /
    • pp.17-23
    • /
    • 2022
  • Using cement as a road subbase is economical, easily modified and supplemented and has excellent road pavement quality control. In addition, cement adheres well to sandy soils without adhesion, and it plays a role of permanently preserving adhesion in viscous soils with adhesion, so it can be widely applied as stable treatment with the advantages of increased strength, reduced compressibility. and improved durability. However, while cement is excellent in terms of strength for a road subbase, the material properties mean that it is difficult to maintain and reinforce when cracks or fractures occur due to dry shrinkage, and the pH increases in the ground due to hexavalent chromium eluting from cement. which can cause environmental problems such as groundwater contamination. Therefore, this study evaluates the usability of alternatives in the road base layer such as environmentally cementitious stabilizer and on-site soil generated from the site. We intend to reduce the environmental damage and evaluate the durability. To evaluate the applicability of the site, Environmental stability test and freeze-thaw test and wetting-drying test was conducted to evaluate the strength characteristics of alternative materials on the road through the limited performance evaluation of environmentally cementitious stabilizer. The test ranges were set at mixing ratios of 10%, 20%, and 30% and ages of three days, and 28 days old to evaluate the early strength and reference strength according to the mixing ratio of the environmentally cementitious stabilizer.

The Evaluation on the Environmental Effect of Coal-Ash and Phosphogypsum as the Evapotranspiration Final Cover Material (증발산 원리를 이용한 매립장 최종 복토공법의 복토재로서 석탄재와 인산석고의 환경적 영향 평가)

  • Yu, Chan;Yang, Kee-Sok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • In this study, the utilization of coal-ash and phosphogypsum was considered as the evapotranspiration final landfill cover(ET cover) material. Cover material considered was the mixture of the weathered granite soil, coal-ash and phosphogypsum and so we sequentially performed the leaching test, column test and field model test to investigate the environmental effects of mixtures of coal-ash and phosphogypsum. In the leaching test, all materials had lower heavy metal concentration than the regulated threshold values. The column test and the review of related regulations were carried out to determine the optimum mixing ratio(OMR) and OMR was soil(4):coal-ash(1): phosphogypsum(1) on the volume base, which was applied to field model test. Field model tests were continued from February to June, 2004 in the soil box that was constructed with cement block. It was verified that coal-ash and phospogypsum mixed with soil was safe environmentally and the mixture of both wastes could improve the water retention capacity of cover materials.

  • PDF