• Title/Summary/Keyword: Cement-Mixed Soil

Search Result 115, Processing Time 0.03 seconds

Workability Characteristics of Cement-Mixed Soil for Architecture (건축용 시멘트 혼합토의 워커빌리티 특성)

  • Lee Sang-Ho;Kim Sang-Chul;Kim Jin-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.15-22
    • /
    • 2006
  • This study was conducted by the slump test and the consistency test of the cement mixed soil which is soil mixed with cement to investigate and estimate the difficulty degree of work and the proper water content. So I would like to present the fundamental data that establish the work standard of the cement mixed soil. In conclusion, in this study the slump value of the cement mixed soil increases over-all according to the increase of the water content although it has a little difference of the increase range and it is smaller than one of the soil. It is estimated that the aggregating and throwing work of the cement mixed soil which is mixed with 6% and 9% cement would be fine when it has the $25%{\sim}27%$ water content and the wall plastering work is the $30%{\sim}32%$ and the floor plastering work is the $30%{\sim}35%$ and the flowing and pouring work is the $40%{\sim}42%$ water content as well as the mold compacting work is the 20%.

Utilization of ladle furnace slag from a steelwork for stabilization of soil cement

  • Ayawanna, Jiratchaya;Kingnoi, Namthip;Sukchaisit, Ochakkraphat;Chaiyaput, Salisa
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.149-158
    • /
    • 2022
  • Ladle furnace (LF) slag, waste from the steel-making process, was incorporated to improve the compressive strength of soil cement. LF slag was mixed to replace the cement in the soil-cement samples with wt% ratio 20:0, 15:5, and 10:10 of cement and slag, respectively. LF slag in the range of 5, 10, and 20 wt% was also separately added to the 20-wt% cement-treated soil samples. The soil-cement mixed LF slag samples were incubated in a plastic wrapping for 7, 14, and 28 days. The strength of soil cement was highly developed to be higher than the standard acceptable value (0.6 MPa) after incorporating slag into soil cement. The mixing of LF slag resulted in more hydration products for bonding soil particles, and hence improved the strength of soil cement. With the LF slag mixing either a replacement or additive materials in soil cement, the LF slag to cement ratio is considered to be less than 1, while the cement content should be more than 10 wt%. This is to promote a predominant effect of cement hydration by preventing the partially absorbed water on slag particles and keeping sufficient water content for the cement hydration in soil cement.

The Strength Characteristic of Soil Cemented Mixed with Oyster Shells and Loess (굴패각과 황토를 혼합한 소일시멘트의 강도특성)

  • Lee, Jin-Soo;Lee, Kang-Il;Kim, Chan-Kee;Kim, Hang-Gyu;Kim, Tae-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.527-532
    • /
    • 2010
  • Soil-cement has been broadly used for eco friendly pavement, slope protection and soft soil improvement since it used for the increase of soil strength with cement. Recently, additional agents are mixed with existing soil-cement so as to improve specific properties or functions such as strength, color and permeability of it. This study aims at figuring out the physical and mechanical properties of a soil-cement mixed with crashed oyster shell and loess. The study is specially focused on the applicability of oyster shell as an alternative material for sands. To have his objective achieved a series of uniaxial compression tests were conducted. As a result, it appears that usage of oyster shell may have effect on strength improvement of mixed soils.

  • PDF

Strength Characteristics of Cement-Mixed Soil (시멘트 혼합토의 강도 특성)

  • Kim, Sang-Chul;Lee, Sang-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.49-56
    • /
    • 2005
  • This study was conducted by the tests of materials engineering and soil mechanics to see the strength characteristics of the ‘Cement-Mixed Soil'. To sum up my experiments, I would like to present the results which are the theoretical base and fundamental data to establish the standard design including the design of mixing proportions of the soil as a construction material. In conclusion, in this study the optimum cement mixing ratio is $9\%$ and in this ratio the optimum moisture content of compaction work is $19.3\%$ from the analysis of the strength characteristics, as well as in consideration of the economic profits and nature familiar facts.

Strength Characteristics of Soil-Cement Constructed in Seoul Urban Area (서울 도심지 내 지반에 시공한 소일-시멘트의 강도 특성)

  • Choo, Jin-Hyun;Kim, Young-Seok;Kim, Hak-Seung;Cho, Yong-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1206-1211
    • /
    • 2010
  • Soil-cement, a hardened mixture of Portland cement, soil, and water that contain sufficient durability, has been widely utilised in Seoul urban construction sites to retain lateral earth pressures or reinforce grounds. However, little information has been reported about the strength characteristics of soil-cement constructed in Seoul urban area. In this study, we performed a number of unconfined test to the soil-cements mixed from soils sampled in 3 sites in Seoul urban area. Results indicate that unconfined strengths and optimum cement amounts of soil-cements are highly dependent on the proportion of coarse-grain particles of mixed soils. Furthermore, changes of unconfined strengths with curing time are diverse with respect to mixing conditions.

  • PDF

A Study on the Effects of Bituminous Material on Durability of Soil-Cement Mixtures (염청재료가 흙-시멘트의 강도 및 내구성에 끼치는 영향에 관한 연구)

  • 김종옥;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4599-4613
    • /
    • 1978
  • This study was intended to investigate the effects of bituminous material content of soil-cement mixtures on their durability. For the purpose, unconfined compressive strength test, Freeze-thaw test, and wet-dry test were performed with three types of soil. Each type of soil was mixed with three levels of cement content and each soil-cement mixture was mixed with four levels of bituminous material content. For the unconfined compressive strength test, Freeze-thaw test and wet-dry test, 324, 108, and 108-specimens were prepared respectively. Unconfined compressive strength was measured at age of 7-days, 14-days and 28-days using 108-specimens in each age. The soil-cement loss rate due to freeze-thaw and wet-dry were calculated after 12 cycles of test using 108-specimens in each test. The results are summarized as follows : 1. Optimum moisture content was increased with increase of cement content, but maximum dry density was changed irregulary with increase of the cement content. 2. The unconfined compressive strength was increased with increase of cement content, bituminous material content and curing age. Cement is more effective factor than bituminous material on unconfined compressive strength of soil-cement Mixture. 3. It is estimated as the most economical cement content that the recommended cement content of A.S.T.M. because increasing rate of unconfined compressive strength at age of 28-days was low when cement content is above the recommanded cement content of A.S.T.M. among all types of soil. 4. Although a portion of cement content is substituted for bituminous material, the necessary unconfined compressive strength can be obtained. 5. The soil-cement loss was more influenced by wet-dry than Freeze-thaw 6. The bituminous material is more effective on the decrease of soil-cement loss than increase of unconfined compressive strength 7. The void ratio of soil-cement mixture was changet irregularly with increase of cement content, but that was decreased in proportion to the increase of bituminous material content. 8. The regression equation between the unconfined compressive strength and soil-cement loss rate were obtained as table 7.

  • PDF

Laboratory analysis of loose sand mixed with construction waste material in deep soil mixing

  • Alnunu, Mahdi Z.;Nalbantoglu, Zalihe
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.559-571
    • /
    • 2022
  • Deep soil mixing, DSM technique has been widely used to improve the engineering properties of problematic soils. Due to growing urbanization and the industrial developments, disposal of brick dust poses a big problem and causes environmental problems. This study aims to use brick dust in DSM application in order to minimize the waste in brick industry and to evaluate its effect on the improvement of the geotechnical properties. Three different percentages of cement content: (10, 15 and 20%) were used in the formation of soil-cement mixture. Unlike the other studies in the literature, various percentages of waste brick dust: (10, 20 and 30%) were used as partial replacement of cement in soil-cement mixture. The results indicated that addition of waste brick dust into soil-cement mixture had positive effect on the inherent strength and stiffness of loose sand. Cement replaced by 20% of brick dust gave the best results and reduced the final setting time of cement and resulted in an increase in unconfined compressive strength, modulus of elasticity and resilient modulus of sand mixed with cement and brick dust. The findings were also supported by the microscopic images of the specimens with different percentages of waste brick dust and it was observed that waste brick dust caused an increase in the interlocking between the particles and resulted in an increase in soil strength. Using waste brick dust as a replacement material seems to be promising for improving the geotechnical properties of loose sand.

The Property of Frozen Soil Mixed with Shredded Tire and Cement (폐타이어 분말 및 시멘트를 혼합한 동결토의 특성)

  • Kim, Young-Chin;Son, Seung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1487-1493
    • /
    • 2008
  • The frost heaving is related with thermal conduction rate and permeability. If the thermal conduction rate can be controlled, it is effective to prevent from frost heaving. If soil mixed with shredded tire which has relatively lower thermal conduction rate than soil, it helps preventing from frost heaving. However, in this case, the shear strength can get weak. In this study, we compared thermal conduction rate of soil and shredded tire, and test uniaxial compression strength of soil which is mixed with shredded tire and cement in different ratio.

  • PDF

Unconfined Compressive Strength of Soil Cement Mixed with NSC (NSC를 첨가한 소일시멘트의 일축압축강도)

  • 김병일;김영욱;이승현
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.159-165
    • /
    • 2002
  • Soil cement which is a mixture of soil, cement, and water has a broad range of applications since it is economical, ecological, and easy to use, repair, and reinforce. Its applications include pavements, stabilization of slopes, retaining walls, and improvements of soft ground to name a few. Other types of chemicals are often added to increase its strength. This study investigated unconfined compressive strength of cured soil cement mixed with New Soil Chemical(NSC). The investigation involved laboratory experiments under various conditions including soil type, cement content, and ratios of water to NSC. Results of the study show that NSC enhanced the unconfined compressive strength significantly, and the degree of enhancement was varied with test conditions.

Consolidation Behavior of Poor Mixed Soil-Cement (빈배합 시멘트 혼합점토의 압밀 특성)

  • Lee, Jongmin;Kwon, Youngcheul;Lee, Heunggil;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.4
    • /
    • pp.25-31
    • /
    • 2010
  • The amount of dredging clay will be greatly increased by the eco-rive project and port development in Korea. Geotechnical engineers have thrown their efforts into the new ways for effective re-uses of the dredging clay such as the material for reclamation, and so on. However, very high initial water content and low strength causes unexpected difficulties in the aspect of trafficablility or time for consolidation. Therefore, the injection of cement stabilizer is used as one of ways to improve reclaimed ground. However, it also makes an argument by heavy metal from cement stabilizer. In this paper constant rate of strain consolidation test and normal consolidation test were performed to investigate behavior characteristics of the consolidation about soil-cement include lean mixed cement to reduce the environmental loads by the cement. The experimental results of consolidation characteristics about soil-cement include lean mixed cement influenced by mixing ratio. Especially it was observed that mixing ratio of 4%~6% leads not only the reduction of consolidation settlement, but time for consolidation.