• 제목/요약/키워드: Cement Weight

Search Result 748, Processing Time 0.03 seconds

The mechanical characteristics and CO2 emmissions of eggshell powder in cement paste (계란껍질 분말을 혼입한 시멘트 페이스트의 역학 특석 및 CO2 배출량 연구)

  • Chen, YuKun;Lee, HanSeung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.135-136
    • /
    • 2021
  • This study investigated the use of different amounts of eggshell powder (ESP), namely 5%, 10%, and 15% by weight, as a substitute for Ordinary Portland Cement. The results show that its flowability and 28-day compressive strength. Meanwhile the carbon dioxide emission was though sustainable assessment analyzed It was concluded that ESP replacement level of around 5% provides the best performance to reduces environmental pollution.

  • PDF

Hydration and Insulation Characteristics of a Ground Granulated Blast Furnace Slag Based Non-Sintered Cement Using Circulating Fluidized Bed Combustion Ash as a Activator (순환유동층 애시를 자극제로 사용한 고로슬래그 미분말 기반 비소성 시멘트의 수화 및 단열 특성)

  • Lee, Seung-Heun;Lee, Gang-Hyuk;Yoo, Dong-Woo;Ha, Ju-Hyung;Cho, Yun-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.245-252
    • /
    • 2015
  • As people have more interest in environment-friendly structures recently, many researchers are actively researching non-sintered cement in Korea and other countries. Non-sintered cement shows various characteristics of its reaction products and hardeners, depending on the kind of alkali activators. Thus, this study manufactures ground granulated blast furnace slag based non-sintered cement binder by using circulating fluidized bed combustion ash, which is a kind of industrial byproduct, as a stimulant, and investigated its hardening characteristics and hydration, depending on the rate of circulating fluidized bed combustion ash. Besides, this study investigated its insulation property according to the weight lightening of non-sintered cement. As a result, ettringite and C-S-H were mainly formed in the hydration, and it was possible to manufacture a non-sintered cement hardener over 50 MPa. Lastly, it was possible to manufacture a non-sintered cement hardener in a thermal conductivity level of $0.127W/m{\cdot}K$ when the compressive strength was 10 MPa for weight lightening.

Strength properties of Polymer-modified Sandwich panel core using non-structural lightweight Aggregate (비구조용 경량 골재를 충진재로 활용한 폴리머 개질 샌드위치 패널 심재의 강도 특성)

  • 노정식;도정윤;문경주;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.775-780
    • /
    • 2002
  • Sandwich panel made by foamed styrene and ployuretane has been used generally in the construction area because of the high thermal conductivity and light weight but they occur harmful gases to both bodies and environments in the high temperature over $50^{\circ}C$. So, the purpose of this study is to investigate the physical properties of light-weight panel using the non-structural lightweight aggregate as a part of the substitution of foamed styrene and ployuretane. This paper dealt with the effect of the addition of polymer dispersion such as SBR, St/BA-1 and St/BA-2 having polymer-cement ratio as 5, 10, 15% and the filling ratio of continuous void as 50, 60% on the strength of polymer-modified sandwich panel core. From the results, we could know that the compressive and flexural strength of the sandwich panel core using non-structural lightweight aggregate and polymer dispersion such as SBR, St/BA-1 and St/BA-2 tended to be increased with an increase in the polymer-cement ratio and the filling ratio of continuous void.

  • PDF

Sulfuric acid and Hydrochloric acid resistance properties of Light Weight Matrix Based on Blast furnace slag (고로슬래그 기반 경량 경화체의 황산 및 염산 저항 특성)

  • Kim, Weon-Jeong;Lee, Seung-Ho;Park, Sun-Gyu;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.137-138
    • /
    • 2015
  • The use of the cement and increased with the recent development of the construction industry. If the cement is the environmental problems caused by generating a large quantity of CO2 and the production process. Accordingly, this study is the test to determine the sulfuric acid and hydrochloric acid resistance properties of the Light weight matrix product of blast furnace slag-based light. A result, the compression strength of the sulfuric acid and hydrochloric acid immersion showed alower strength than the Plain.

  • PDF

The Resistance of Cement Mortar in Artificial Seawater (2배농도 인공해수에 대한 시멘트모르터의 저항성)

  • 문한영;김진철;김홍삼;이승태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.637-640
    • /
    • 1998
  • Generally, the durability of the reinforced concrete structures reduce when they are constructed in marine environments. The Mg ions and sulfate ions in seawater cause chemical attacks in concrete and the cracks in concrete result from corrosion of steel due to chlorides. In this study, the mortar specimens made from 5 different types of cement were immersed in artificial seawater of 2 times concentration and then we measured the compressive strength, the length change and the weight change. As a result of this study, we found that the compressive strength ratio decreased in the immersed 56days. We also found the longer the immersed days were, the more the increase of weight ratio and the length change were.

  • PDF

Strength Properties of according to the Red mud replacement of Lightweight Matrix based on Blast Furnace Slag (고로슬래그 기반 경량 경화체의 레드머드 치환에 따른 강도특성)

  • Kim, Yun-Mi;Kim, Won-Jong;Park, Sun-Gyu;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.244-245
    • /
    • 2014
  • This is an experimental study on manufacturing of non-cement matrix. Materials like cement and blowing agent in foamed concrete is replaced by by-products from blast furnace slag and paper ash. Further, the experiment was performed by replacing alkali with red mud by (0, 5, 10, 15, 25, 35, 45) of weight of alkali (wt.%) in order to reduce the amount of expensive alkali acclerator. Sample Plain with density showed lowest. The compressive strength test result, showed a similar trend with density. And it showed that compressive strength of the RM-0.05 was highest.

  • PDF

Properties of Cement Mortar Using Mica Waste as Fine Aggregate (운모폐석을 잔골재로 사용한 시멘트 모르타르의 특성)

  • 윤기원;김광화;오상백;한민철;류현기;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.481-484
    • /
    • 2003
  • This study is intended to investigate application of mica waste(MS) to fine aggregate for mortar by comparing it with cement mortar in which crushed sand(CS) and river sand(NS) are used. According to the results, as the physical properties of aggregate, specific gravity is large in order of MS, NS and CS, absorption ratio in order of MS, CS and NS, and unit weight and solid volume percentage in order of NS, CS and MS. In the case of MS mortar, mechanical properties, drying shrinkage and heat conduction ratio are reduced, but the radiative amount of infrared light is excellent compared with NS mortar. Fluidity and unit weight of MS mortar is larger than those of CS mortar, and strength does not make differences. Length change by drying shrinkage is larger, but heat conduction ratio and radiative amount of infrared light are smaller than CS mortar. Thus, it proves that MS can be used in place of NS and CS, but its quality is deteriorated slightly.

  • PDF

Physical and Mechanical Properties of Concrete Using Waste Activated Carbon (폐활성탄을 혼입한 콘크리트의 물리.역학적 성질)

  • Kang, Hyun-Soo;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.1
    • /
    • pp.21-26
    • /
    • 2009
  • This study was performed to evaluate the physical and mechanical properties of concrete using waste activated carbon. Materials used were ordinary portlant cement, crushed coarse aggregate, natural fine aggregate, waste activated carbon, and superplasticizer. The substitution ratios of waste activated carbon were 0,1,2,3,4,5,6,7,8,9 and 10%. The unit weight was decreased and water absorption ratio was increased with increasing the waste activated carbon content, respectively. When the substitution ratio of waste activated carbon was 3%, compressive strength, flexural strength and dynamic modulus of elastisity were more higher than that of the ordinary portland cement (OPC), and it was decreased with increasing the waste activated carbon content, respectively. The most effective contents of waste activated carbon was 2% in performance and 4% in practical use Accordingly, waste activated carbon can be used for concrete material.

Properties of Lightweight Foamed Concrete with Incorporating Ratio of Cement Kiln Dust (CKD 치환율 변화에 따른 경량기포 콘크리트의 특성)

  • Shin, Hyun-Sup;Shin, Jae-Kyung;Jeong, Kwang-Bok;Pei, Chang-Chun;Kim, Seong-Soo;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.861-864
    • /
    • 2006
  • This study investigates the properties of light weight foamed concrete with variances in incorporating ratio of cement kiln dust(CKD). Test showed that an increase of CKD incorporating ratio decreased the fluidity of fresh concrete and increased the unit weight. A sinking depth of specimens incorporating CKD decreased, compared with that of control. As for the compressive strength, it firstly increased and then slightly decreased when incorporated CKD. Tensile strength values were similar to the values of compressive strength, but the ratio of comp. to tens. strength increased. Appearances density of specimens were all raged in KS and the thermal conductivity was also satisfied in KS; less than 0.05-0.160W/($m{\cdot}k$).

  • PDF

Elaboration and characterization of fiber-reinforced self-consolidating repair mortar containing natural perlite powder

  • Benyahia, A.;Ghrici, M.;Mansour, M. Said;Omran, A.
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • This research project aimed at evaluating experimentally the effect of natural perlite powder as an alternative supplementary cementing material (SCM) on the performance of fiber reinforced self-consolidating repair mortars (FR-SCRMs). For this purpose, four FR-SCRMs mixes incorporating 0%, 10%, 20%, and 30% of natural perlite powder as cement replacements were prepared. The evaluation was based on fresh (slump flow, flow time, and unit weight), hardened (air-dry unit weight, compressive and flexural strengths, dynamic modulus of elasticity), and durability (water absorption test) performances. The results reveal that structural repair mortars confronting the performance requirements of class R4 materials (European Standard EN 1504-3) could be designed using 10%, 20%, and 30% of perlite powder as cement substitutions. Bonding results between repair mortars containing perlite powder and old concrete substrate investigated by the slant shear test showed good interlocking justifying the effectiveness of these produced mortars.