• 제목/요약/키워드: Cellulose fiber reinforced concrete

검색결과 29건 처리시간 0.026초

콘크리트의 휨성능 증진 및 균열제어에 대한 특수 가공된 셀룰로오스섬유의 효과 (Effects of Specialty Cellulose Fibers on Improvement of Flexural Performance and Control of Cracking of Concrete)

  • 원종필;박찬기
    • 콘크리트학회논문집
    • /
    • 제12권2호
    • /
    • pp.89-98
    • /
    • 2000
  • The mechanical properties of specialty cellulose fiber reinforced concrete and the contribution of specialty cellulose fiber to drying shrinkage crack reduction potential of concrete and theirs evaluation are presented in this paper. The effects of differing fiber volume fraction(0.03%, 0.06%, 0.08%, 0.1%, 0.15%, 0.2%) were studied. The results of tests of the specialty cellulose fiber reinforced concrete were compared with plain and polypropylene fiber reinforced concrete. Flexural performance(flexural strength and flexural toughness) test results indicated that specialty cellulose fiber reinforcement showed an ability to increase the flexural performance of normal- and high- strength concrete(as compared to plain and polypropylene fiber reinforced concrete). Optimum specialty cellulose fiber reinforced concrete were obtianed using 0.08% fiber volume fraction. Drying shrinkage cracking test results confirmed specialty cellulose fibers are effective in reducing the drying shrinkage cracking of normal and high-strength concrete(as compared to popylene fiber reinforced concrete).

셀룰로오스 섬유보강 콘크리트를 사용한 기계화경작로 확·포장공사의 현장사례 연구 (Field Case Study of Mechanized Form Roads Pavement Construction using Cellulose Fiber Reinforced Concrete)

  • 박종건
    • 한국농공학회논문집
    • /
    • 제57권2호
    • /
    • pp.47-56
    • /
    • 2015
  • At the present, the mechanized form roads pavement was constructed with plain concrete. Mostly, it was used by welded wire mesh for preventing crack. Cellulose fibers for the reinforcement of concrete offer relatively high levels of elastic modulus, fiber count (per unit weight), specific surface, and bond strength to cement-based materials. The construction of concrete pavement confirmed that cellulose fiber reinforced concrete was applicable to mechanized form roads pavement. In the study, cellulose fibers were used here at 0.08 % volume fraction, which is equivalent to a fiber content of $1.2kg/m^3$. Cellulose fiber reinforced concrete were compared with plain concrete. Field test results indicated that cellulose fiber reinforced concrete showed slightly to increase of 28 days compressive strength and improved the initial strength. it tended to increase of splitting tensile strength. Test results showed that the slump and air content tend to decreased. but, the variation of air contends is very little. Also, construction cost of cellulose fiber reinforced concrete is less than about 25.7 % the case of welded wire mesh previously used. Therefore, The cost reduction is expected to be possible in construction site by mechanized form roads pavement.

특수 가동된 셀룰로오스섬유보강 콘크리트의 휨성능 (Flexural Performance of Specialty Cellulose Fiber Reinforced Concrete)

  • 원종필;박찬기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.311-314
    • /
    • 1999
  • This study is aim to evaluate of the flexural performance of specialty cellulose fiber reinforced concrete. Flexural test is proceeded by third-point loading method and the size of the test specimens is 15$\times$15$\times$55cm. The rate of loading was 0.006mm/min. The effects of differing fiber volume fraction(0.08%, 0.1%, 0.15%) were studied. The results of test on the specialty cellulose fiber reinforced concrete were compared with plain and polypropylene fiber reinforced concrete. Results indicated that specially cellulose fiber reinforcement showed an improvement of flexural performance.

  • PDF

특수 가공된 셀룰로오스섬유보강 콘크리트의 역학적 특성 (Mechanical Properties of Specialty Cellulose Fiber Reinforced Concrete)

  • 원종필;박찬기
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.307-312
    • /
    • 1999
  • This study has been performed to obtain the mechanical properties of specialty cellulose fiber reinforced concrete. Flexural test is proceeded by third-point loading method and the size of the test specimens is 15${\times}$15${\times}$55mm. The effect of differing volume fraction (0.08%, 0.1%, 0.15%) were studied. The results of tests of the specialty cellulose fiber reinforced concrete were compared with plain and polypropylene fiber reinforced concrete. Results indicated that specialty cellulose fiber reinforcement showed an ability to increase the flexural strength.

  • PDF

특수 가공된 셀룰로오스섬유보강 콘크리트의 초기 특성 (Properties of Specialty Cellulose Fiber Reinforced Concrete at Early Ages)

  • 원종필;박찬기
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.349-354
    • /
    • 1999
  • Specialty cellulose fibers processed for the reinforcement of concrete offer relatively high levels of elastic modulus and bond strength. The hydrophilic surfaces of specialty cellulose fibers facilitate their dispersion and bonding in concrete. Specialty cellulose fibers have small effective diameters which are comparable to the cement particle size, and thus promote close packing and development of dense bulk and interface microstructure in the matrix. The relatively high surface area and the close spacing of specialty cellulose fibers when combined with their desirable mechanical characteristic make them quite effective in the suppression and stabilization of microcracks in the concrete matrix. The properties of fresh mixed specialty cellulose fiber reinforced concrete and the contribution of specialty cellulose fiber to the restrained shrinkage crack reduction potential of cement composites at early age and theirs evaluation are presented in this paper. Results indicated that specialty cellulose fiber reinforcement showed an ability to reduce the total area significantly (as compared to plain concrete and polypropylene fiber reinforced concrete.

  • PDF

셀룰로우스섬유보강 콘크리트의 소성수축 균열에 관한 실험적 연구 (Experimental Study for Plastic Shrinkage Cracking of Cellulose Fiber Reinforced Concrete)

  • 원종필;박찬기;안태송
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.319-323
    • /
    • 1998
  • Plastic shrinkage cracking is a major concern for concrete, especially for flat structures as highway pavement, slabs for parking garages, and walls. One of the methods to reduce the adverse effect of plastic shrinkage cracking is to reinforced concrete with short randomly distributed fibers. The contribution of cellulose fiber to the plastic shrinkage crack reduction potential of cement composites and its evaluation are presented in this paper. The effects of differing amounts of fibers(0.9kg/㎥, 1.3kg/㎥, 1.5kg/㎥) were studied. The results of tests of the cellulose fiber reinforced concrete were compared with plain concrete and polypropylene fiber reinforced concrete. Results indicated that cellulose fiber reinforcement showed an ability to reduce the total area and maximum crack width significantly(as compared to plain concreted to plain concrete and polypropylene fiber concrete).

  • PDF

Optimization of Carbonated Cellulose Fiber-Cement Composites

  • Won, Jong-Pil;Bae, Dong-In
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.79-89
    • /
    • 2000
  • This research developed an accelerated curing processe for cellulose fiber reinforced cement composites using vigorous reaction between carbon dioxide and cement paste. A wet-processed cellulose fiber reinforced cement system was considered. Carbonation curing was used to complement conventional accelerated curing. The parametric study followed by optimization investigation indicated that the carbonation curing can enhance the productivity and energy efficiency of manufacturing cellulose fiber reinforced cement composites. This also adds environmental benefits to the technical and economical advantages of the technology.

  • PDF

전단보강근이 없는 섬유보강 철근콘크리트 보의 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Fiber-Reinforced Concrete Beam Without Shear Reinforcement)

  • 김정섭;고송균;최진석
    • 한국건축시공학회지
    • /
    • 제3권3호
    • /
    • pp.83-90
    • /
    • 2003
  • This study examines the material characteristics of fibers and their influences on reinforced concrete through the tests of reinforced concrete by the types of fibers including non-reinforced, steel, polypropylene and cellulose fibers and the test of compressive strength and reinforced concrete beam without shear reinforcement and consequently it obtains the following conclusions. As a result of conducting compressive strength by the types of specimens, fiber reinforced specimen with the highest compressive strength value at 28 days of age was cellulose fiber reinforced specimen as 280.4kgf/$\textrm{cm}^2$ and steel fiber specimen had the highest compressive strength of 250.7kgf/$\textrm{cm}^2$ at 180 days of age. In case of non-reinforced specimen, its compressive strength was 277.4kgf/$\textrm{cm}^2$ at 28 days of age and 273.1kgf/$\textrm{cm}^2$ at 180 days of age. Comparing the compressive strength of non-reinforced specimen to that fiber reinforced specimen showed that the compressive strength of fiber reinforced specimen was lower in the passage of age and the results of this experiment showed no effects of fiber reinforcement. As a result of testing reinforced concrete beam without shear reinforcement, ductility factors of specimens were 4.67 for non-reinforced specimen, 8.18 for steel fiber reinforced specimen, 6.20 for polypropylene fiber reinforced specimen and 5.49 for cellulose reinforced specimen, and it is found that steel fiber reinforced specimen was highest. When non-reinforced specimen and steel fiber reinforced specimen were compared, steel fiber reinforced specimen had higher ductility factor of about 75.2% than that of non-reinforced specimen.

섬유보강 철근콘크리트 보의 강도특성에 관한 실험적 연구 (An Experimental Study on the Strength Characteristics of Fiber-Reinforced Concrete Beam)

  • 김정섭;박영배
    • 한국건축시공학회지
    • /
    • 제3권1호
    • /
    • pp.85-91
    • /
    • 2003
  • This study aims to provide basic data that can be applied to construct real structures. For this, an experimental structure was manufactured to identify durability according to age of fiber-reinforced concrete which contains fiber reinforcement materials (polypropylene fiber, steel fiber, cellulose fiber) and structural property about flexural behavior and destruction of reinforced concrete beam, and a relation between load and deflection, crack and destruction according to increase of load and ductility capacity was examined. Fiber-reinforced concrete materials and other constructional materials were experimented and the result is presented as follows: The results obtained through material test of concrete and static experiment of members usings 1. The experiment shows that compressive strength of fiber-reinforced concrete was lower than that of non-reinforced concrete. 2. As a result of strength experiment according to different kinds of fiber, compressive strength of an experimented structure that contains cellulose fiber was the highest when age was 28. 3. When deflection of reinforced concrete beam was examined, it was reported that ductility capacity of the experimented structure that contains fiber-reinforced concrete was raise than that of non-reinforced concrete.

Time-Dependent Behavior of Saturated Cellulose Fiber Reinforced Cement(CFRC) Pipe

  • Choi, Yeol
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권3E호
    • /
    • pp.161-164
    • /
    • 2006
  • Cellulose fiber reinforced cement(CFRC) pipe has been gradually introduced in the pipe market as a replacement of previously popular asbestos cement pipes. Since CFRC pipe is still relatively unknown in the pipe market, there are great concerns for the design and application in practice related to the time-dependent behavior of CFRC under long-term sustained loading. This paper presents an experimental investigation of the time-dependent behavior of cellulose fiber reinforced cement(CFRC) pipe. A total of six CFRC pipes were tested under various loading levels, and their vertical deformation was recorded to understand the characteristics of the time-dependent behavior. Based on the test results, a factor of safety(FS) of 1.82 is proposed, and a regression factor(R) of 1.88 is estimated for the application of CFRC pipes in practice.