• 제목/요약/키워드: Cellulose Hydrolysis

검색결과 239건 처리시간 0.027초

황산 가수분해 조건이 셀룰로오스 나노크리스탈의 수율, 입도 및 전기화학적 특성에 미치는 영향 (Effect of sulfuric acid hydrolysis condition on yield, particle size and surface charge of cellulose nanocrystals)

  • 류재호;윤혜정
    • 펄프종이기술
    • /
    • 제43권4호
    • /
    • pp.67-75
    • /
    • 2011
  • Sulfuric acid hydrolysis is a typical approach for producing cellulose nanocrystals. The method has been widely used, but it has a disadvantage of low yield of cellulose nanocrystals compared to mechanical method. To expand the application of cellulose nanocrystals in practical, we should be able to produce them with higher yield and the controlled properties. In this study, therefore, we intended to investigate the effect of sulfuric acid hydrolysis condition on the characteristics of the prepared cellulose nanocrystals. The concentration of sulfuric acid, temperature and hydrolysis time were varied, and the yield as well as diverse properties including the morphology, size and zeta potential were examined. We could obtain cellulose nanocrystals up to 70% of yield and found that the properties were dependent on the reaction condition. It would be helpful to select an appropriate condition for producing cellulose nanocrystals.

Cellulose Hydrolysis by Digestive Enzymes of Reticulitermes speratus, a Native Termite from Korea

  • Lee, Young-Min;Kim, Hyun-Jung;Cho, Moon-Jung;Shin, Keum;Kim, Young-Kyoon;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권2호
    • /
    • pp.140-148
    • /
    • 2010
  • This study was to investigate the enzymatic hydrolysis of cellulose using the cellulase from whole body of the native termite collected in Milyang-si, Kyungsangnamdo, Korea. In the results, optimal temperature and pH for the enzyme of native termites were $45^{\circ}C$ and pH 5.5 for both endo-${\beta}$-1, 4-glucanase and ${\beta}$-glucosidase. Enzyme activity of the termite enzyme was shown $8.8{\times}10^{-2}\;FPU/m{\ell}$. And the highest glucose hydrolysis rate of cellulose by the digestive enzyme from test termites was 24.5% based on the glucan, comparing 59.7% by commercial enzyme (only celluclast 1.5 L) at 1% (w/v) substrate and 36 hours in hydrolysis time. This hydrolysis rate by the digestive enzyme from test termites was comparatively high value in 41% level of the commercial enzyme. When cellulose was hydrolyzed by the digestive enzyme of the native termite, glucose hydrolysis was almost completed in 12 hours which was the considerably reduced time for cellulose hydrolysis. It was suggested that the quiet short reaction time for cellulose hydrolysis by the enzyme from native termite could be a very high advantage for development of hydrolysis cellulase for lignocellulosic biomass.

섬유소 가수분해반응에 관한 연구(I) -효소흡착에 대한 섬유소의 구조적 특성- (Kinetic Studies on Enzymatic Hydrolysis of Cellulose(I) -Effect of Structural Features of Cellulose on Enzyme Adsorption-)

  • 이용훈;김철
    • KSBB Journal
    • /
    • 제6권2호
    • /
    • pp.157-166
    • /
    • 1991
  • The structural properties of cellulose are significantly changed with the progress of hydrolysis reaction. The effects of changes on such properties of cellulosic substrate as crystallinity, amicessibility of enzyme to the active site of cellulose surface, and particle size on the kinetics of enzymatic hydrolysis have been studied. Among those physical studies, the apparent surface active site of cellulose particle was found to have the most significant effect on the hydrolysis kinetics. Based on the experimental results, the adsorption affinity of enzyme and hydrolysis rate were mainly influenced by the surface roughness of cellulose particle. The extent of accesssible active site may be expressed as the change of particle diameter. The Langmuir isotherm was proposed in terms of enzyme activity to explain the actual action of enzyme protein.

  • PDF

Effect of a Nonionic Surfactant on the Adsorption and Kinetic Mechanism for the Hydrolysis of Microcrystalline Cellulose by Endoglucanase Ⅰ and Exoglucanase II

  • 김동원;장영훈;정영규;손기향
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권3호
    • /
    • pp.300-305
    • /
    • 1997
  • Effect of a nonionic surfactant, Tween 20 on the adsorption and kinetic mechanism for the hydrolysis of a microcrystalline cellulose, Avicel PH 101, by endoglucanase Ⅰ (Endo Ⅰ) and exoglucanase Ⅱ (Exo Ⅱ) isolated from Trichoderma viride were studied. The Langmuir isotherm parameters, amount of maximum adsorption (Amax) and adsorption equilibrium constant (Kad) for the adsorption, were obtained in the presence and the absence of nonionic surfactant. On the addition of Tween 20, the Kad and Amax values of Exo Ⅱ were decreased, while those of Endo Ⅰ were not affected. These indicate that the adsorption affinity of Exo Ⅱ on the cellulose is weakened by nonionic surfactant, and the surfactant enhanced desorption of Exo Ⅱ from insoluble substrate. The enzymatic hydrolysis of the cellulose can be described by two parallel pseudo-first order reactions using the percentages of easily (Ca) and hardly (Cb) hydrolyzable cellulose in Avicel PH 101 and associated rate constants (ka and kb). The Ca value was increased by adding Tween 20 for all enzyme samples (Exo Ⅱ, Endo Ⅰ and their 1:1 mixture) implying that the low-ordered crystalline fraction in the cellulose may be partly dispersed by surfactant. The ka value was not affect by adding Tween 20 for all enzyme samples (Exo Ⅱ, Endo Ⅰ and their 1:1 mixture). The kb value of Exo Ⅱ was increased by adding Tween 20, while that of Endo Ⅰ was not affected. This suggests that the surfactant helps the Exo Ⅱ desorb from microcrystalline cellulose, and increase the hydrolysis rate. These results were show that the increase of hydrolysis of cellulose by the nonionic surfactant is due to both the activation of Exo Ⅱ and partial defibrillation of the cellulose.

수화(水化) 셀룰로오스로 제조(製造)한 카르복시메틸 세룰로오스의 치환(置換) 특성(特性) (Substitution Characteristics of Carboxymethyl cellulose made from Hydrocellulose)

  • 최원실;안원영
    • Journal of the Korean Wood Science and Technology
    • /
    • 제20권2호
    • /
    • pp.81-90
    • /
    • 1992
  • The effect of acid treatment of cellulose on the substitution charateristics of carboxymethylation was studied in this paper. Five samples of hydrocellulose(HC), all prepared from ${\alpha}$-cellulose by hydrolysis with five reaction times and determined on average molecular weight and polydispersity, were carboxymethylated to carboxymethyl cellulose (CMC). The CMCs from HCs were examined upon degree of substitution(DS), distribution of carboxymethyl groups in anhydroglucose units of the cellulose, and unsubstituted anhydroglucose(USAG) content. The DS of CMCs increased with increasing the hydrolysis time except CMC from HC at 1 hour hydrolysis time. In carboxymethylation the availability of hydroxyl groups on anhydroglucose units in HCs was the highest on OH(2), and the relative availability of OH(6) increased with the increasing of the hydrolysis time. The USAG contents were more deviated than that calculated based on Spurlin's model, and had a strong tendency of decreasing with increasing the hydrolysis time. The reactivity of HC was lower than that of ${\alpha}$-cellulose and the relative availability of OH(6) in HC increased with the hydrolysis time.

  • PDF

Morphology of Nanocelluloses and Micro-sized Cellulose Fibers Isolated by Acid Hydrolysis Method

  • Cho, Mi-Jung;Park, Byung-Dae
    • 펄프종이기술
    • /
    • 제41권5호
    • /
    • pp.26-32
    • /
    • 2009
  • As a part of utilizing the nanocellulose (NC) from lignocellulosic components of wood biomass, this paper reports preliminary results on the products of sulfuric acid hydrolysis. The purpose of this study was to investigate the morphology of both NC and micro-sized cellulose fiber (MCF) isolated by acid hydrolysis from commercial microcrystalline cellulose (MCC). Field emission.scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were employed to observe the acid hydrolysis suspension, NC, and MCF. The electron microscopy observations showed that the acid hydrolysis suspension, before separation into NC and MCF by centrifugation, was composed of nano-sized NCs and micro-sized MCFs. The morphology of isolated NCs was a whisker form of rod-like NCs. Measurements of individual NCs using TEM indicated dimensions of 6.96$\pm$0.87 nm wide by 178$\pm$55 nm long. Observations of the MCFs showed that most of the MCC particles had de-fibered into relatively long fibers with a diameter of 3-9 ${\mu}m$, depending on the degree of acid hydrolysis. These results suggest that proper technologies are required to effectively realize the potentials of both NCs and MCFs.

Simultanceous Saccharification and Fermentation of Cellulose for Lactic Acid Production

  • Yoon, Hyon-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제2권2호
    • /
    • pp.101-104
    • /
    • 1997
  • Lactic acid production from ${\alpha}$-cellulose by simultaneous saccharification and fermentation (SSF) was studied. The cellulose was converted in a batch SSF using cellulase enzyme Cytolase CL to produce glucose sugar and Lactobacillus delbrueckii to ferment the glucose to lactic acid. The effects of temperature, PH, yeast extract loading, and lactic acid inhibition were studied to determine the optimum conditions for the batch processing. Cellulose was converted efficiently to lactic acid, and enzymatic hydrolysis was the rate controlling step in the SSF. The highest conversion rate was obtained at 46$^{\circ}C$ and pH 5.0. The observed yield of lactic acid from ${\alpha}$-cellulose was 0.90 at 72 hours. The optimum pH of the SSF was coincident with that of enzymatic hydrolysis. The optimum temperature of the SSF was chosen as the highest temperature the microoraganism could withstand. The optimum yeast extract loading was found to be 2.5g/L. Lactic acid was observed to be inhibitory to the microorganisms' activity.

  • PDF

셀룰라아제와 베타글루코시다아제의 혼합효소를 사용한 섬유소-가수분해반응의 최적조건 (Optimum Conditions of Cellulose-Hydrolysis Reaction with Mixed Enzymes of Cellulase and $\beta$-Glucosidase)

  • 손민일;김태옥
    • KSBB Journal
    • /
    • 제13권1호
    • /
    • pp.20-25
    • /
    • 1998
  • Optimum conditions of the cellulose-hydrolysis reaction with mixed enzymes(cellulase extracted from Penicellium funiculosum mixed with $\beta$-glucosidase extracted from Almod) were investigated to increase the production of glucose from cellulose. Experimental result showed that optimum conditions fro pH, activity ratio of $\beta$-glucosidase to cellulase, concentration of mixed enzymes, concentration of cellulose as a substrate, and temperature range were 4.2, 0.4, 0.8, U/mL, 40 g/L, and 37$\pm$3$^\circ C$, respectively. In these conditions, quantities of glucose productions by using mixed enzymes were larger than those by using cellulase at optimum conditions.

  • PDF

The Brown-Rot Basidiomycete Fomitopsis palustris Has the Endo-Glucanases Capable of Degrading Microcrystalline Cellulose

  • Yoon, Jeong-Jun;Cha, Chang-Jun;Kim, Yeong-Suk;Son, Dong-Won;Kim, Young-Kyoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.800-805
    • /
    • 2007
  • Two endoglucanases with processive cellulase activities, produced from Fomitopsis palustris grown on 2% microcrystalline cellulose(Avicel), were purified to homogeneity by anion-exchange and gel filtration column chromatography systems. SDS-PAGE analysis indicated that the molecular masses of the purified enzymes were 47 kDa and 35 kDa, respectively. The amino acid sequence analysis of the 47-kDa protein(EG47) showed a sequence similarity with fungal glycoside hydrolase family 5 endoglucanase from the white-rot fungus Phanerochaete chrysosporium. N-terminal and internal amino acid sequences of the 35-kDa protein(EG35), however, had no homology with any other glycosylhydrolases, although the enzyme had high specific activity against carboxymethyl cellulose, which is a typical substrate for endoglucanases. The initial rate of Avicel hydrolysis by EG35 was relatively fast for 48 h, and the amount of soluble reducing sugar released after 96 h was $100{\mu}g/ml$. Although EG47 also hydrolyzed Avicel, the hydrolysis rate was lower than that of EG35. Thin layer chromatography analysis of the hydrolysis products released from Avicel indicated that the main product was cellobiose, suggesting that the brown-rot fungus possesses processive EGs capable of degrading crystalline cellulose.

Fast and Soft Functionalization of Carbon Nanotube with -SO3H, -COOH, -OH Groups for Catalytic Hydrolysis of Cellulose to Glucose

  • Lusha, Qin;Lee, Sungho;Li, Oi Lun
    • 한국표면공학회지
    • /
    • 제53권3호
    • /
    • pp.87-94
    • /
    • 2020
  • Herein, sulfonated carbon nanotubes (CNT) have been prepared in dilute sulfuric acid (H2SO4) via a novel sulfonation approach based on gas-liquid interfacial plasma (GLIP) at room temperature. The sulfonic acid groups and total acid groups densities of CNT after GLIP treatment in 2 M H2SO4 for 45 min can reach to 0.53 mmol/g and 3.64 mmol/g, which is higher than that of sulfonated CNT prepared under 0.5 M / 1 M H2SO4. The plasma sulfonated CNT has been applied as catalysts for the conversion of microcrystalline cellulose to glucose. The effect of hydrolysis temperature and hydrolysis time on the conversion rate and product distribution have been discussed. It demonstrates that the total conversion rate of cellulose increasing with hydrolysis temperature and hydrolysis time. Furthermore, the GLIP sulfonated CNT prepared in 2 M H2SO4 for 45 min has shown high catalytic stability of 85.73 % after three cycle use.