Browse > Article

Effect of sulfuric acid hydrolysis condition on yield, particle size and surface charge of cellulose nanocrystals  

Ryu, Jae-Ho (Dept. of Forest Sciences, CALS, Seoul National University)
Youn, Hye-Jung (Dept. of Forest Sciences, CALS, Seoul National University)
Publication Information
Journal of Korea Technical Association of The Pulp and Paper Industry / v.43, no.4, 2011 , pp. 67-75 More about this Journal
Abstract
Sulfuric acid hydrolysis is a typical approach for producing cellulose nanocrystals. The method has been widely used, but it has a disadvantage of low yield of cellulose nanocrystals compared to mechanical method. To expand the application of cellulose nanocrystals in practical, we should be able to produce them with higher yield and the controlled properties. In this study, therefore, we intended to investigate the effect of sulfuric acid hydrolysis condition on the characteristics of the prepared cellulose nanocrystals. The concentration of sulfuric acid, temperature and hydrolysis time were varied, and the yield as well as diverse properties including the morphology, size and zeta potential were examined. We could obtain cellulose nanocrystals up to 70% of yield and found that the properties were dependent on the reaction condition. It would be helpful to select an appropriate condition for producing cellulose nanocrystals.
Keywords
cellulose nanocrystals; sulfuric acid hydrolysis; morphology; yield; zeta potential;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kono, H., Yunoki, S., Shikano, T., Fujiwara, M., Erata, T., and Takai, M., CP/MAS $^{13}C$ NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS $^{13}C$ NMR spectrum of the native cellulose, J. Am. Chem. Soc., 124(25):7506-7511 (2002).   DOI   ScienceOn
2 Nishiyama, Y., Sugiyama, J., Chanzy, H., and Langan, P., Crystal structure and hydrogen bonding system in cellulose IR from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc., 125(47):14300-14306 (2003).   DOI   ScienceOn
3 Nishiyama, Y., Langann, P., and Chanzy, H., Crystal structure and hydrogen-bonding system in cellulose I $\beta$ from synchrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc., 124(31):9074-9082 (2002).   DOI   ScienceOn
4 Earl, W. L., and VanderHart, D. L., Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure, Macromolecules 14(3):570-574 (1981).   DOI
5 Sjostrom, E., Wood chemistry fundamentals and applications, Academic Press, New York, p 58 (1981).
6 Bledzki, A. K., and Gassan, J., Composites reinforced with cellulose based fibres, Pro. Polym. Sci. 24:221-274 (1999).   DOI   ScienceOn
7 Azizi Samir, M. A. S., Alloin, F., and Dufresne, A., Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules, 6:612-626 (2005).   DOI   ScienceOn
8 Siqueira, G., Bras, J., and Dufresne, A., Cellulosic bionanocomposites: A review of preparation, properties, applications, Polymers, 2:728-765 (2010).   DOI
9 Fink, H.-P., Hoffmann, D., and Philipp, B., Some aspects of lateral chain order in cellulosics from X-ray scattering, Cellulose 2(1):51-70 (1995).
10 Ishikawa, A., Okano, T., and Sugiyama, J., Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, $III_{I}$ and $IV_{I}$, Polymer, 38(2):463-468 (1997).   DOI   ScienceOn
11 Fink, H. P., Philipp, B., Paul, D., Serimaa, R., and Paakkari, T., The structure of amorphous cellulose as revealed by wide-angle X-ray scattering, Polymer, 28(8):1265-1270 (1987).   DOI   ScienceOn
12 Revol, J.-F., Bradford, H., Giasson, J., Marchessault, R. H. and Gray, D. G., Helicoidal self-ordering of cellulose microfibrils in aqueous suspension, Int. J. Biol. Macromol. 14:170-172 (1992).   DOI   ScienceOn
13 Saeman, J. F., Kineticsof wood saccharification, Ind. Eng. Chem., 37(1):43-52 (1945).   DOI
14 Springer, E. L., Hydrolysis of aspenwood xylan with aqueous solutions of hydrochloric acid, Tappi 49(3): 102-106 (1966).
15 Daruwalla, E. H., and Shet, R. T., Heterogeneous acid hydrolysis of alpha-cellulose from sudanese cotton, Text. Res. J. 32:942-954 (1962).   DOI
16 Bondeson, D., Mathew, A., Oksman, K., Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis, Cellulose 13:171-180 (2006).   DOI   ScienceOn
17 Xiang, Q., Lee, Y. Y., Pettersson, P. O., and Torget, R. W., Heterogeneous aspects of acid hydrolysis of $\alpha$-cellulose, Appl. Biochem. Biotechnol. 105:505-514 (2003).
18 Bondeson, D., Kvien, I., and Oksman, K., Cellulose Nanocomposites, Oksman, K., and Sain, M. (ed.), American Chemical Society, Washington, DC, p. 22 (2005).
19 Zhao, H., Kwak, J. H., Zhang, Z. C., Brown, H. M., Arey, B. W., and Holaday, J. E, Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis, Carbohydrate polymers 68:235-241 (2007).   DOI   ScienceOn
20 Fleming, K., Gray, D. G., Prasannan, S., and Matthews, S., Cellulose crystallites: A new and robust liquid crystalline medium for the measurement of residual dipolar couplings, J. Am. Chem. Soc. 122(21):5224-5225 (2000).   DOI   ScienceOn
21 Araki, J., Wada, M., Kuga, S., Okano, T., Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose, Colloids and surfaces A, 142(1):75-82 (1998).   DOI   ScienceOn
22 Habibi, Y., Lucia, L. A., Rojas, O. J., Cellulose nanocrystals: Chemistry, self-assembly, and applicaitions, Chem. Rew. 110:3479-3500 (2010).   DOI   ScienceOn
23 Grigoriew, H., and Chmielewski, A. G., Capabilities of X-ray methods in studies of processes of permeation through dense membranes, J. Membr. Sci., 142(1):87-95 (1998).   DOI   ScienceOn
24 Agarwal, U. P., Reiner, R. S., and Ralph, S. A., Cellulose I crystallinity determination using FT-Raman spectroscopy: Univariate and multivariate methods, Cellulose 17:721-733 (2010).   DOI   ScienceOn
25 Sakurada, I., and Nukuchina, Y., Experimental determination of the elastic modulus of crystalline regions in oriented polymers, J. Polym. Sci. 57:651-660 (1962).   DOI