• Title/Summary/Keyword: Cellulose Acetate Membrane

Search Result 72, Processing Time 0.029 seconds

A Permeation Behavior for the Pervaporation of Aqueous Ethanol Solution (에탄올 수용액의 Pervaporation에서의 투과거동)

  • Bae, Seong-Youl;Lee, Han-Sun;Hwang, Seong-Min;Kim, Hee-Taik;Kumazawa, Hidehiro
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.127-138
    • /
    • 1994
  • In the process of pervaporation separation for aqueous ethanol solution through cellulose tai-acetate(CTA) membrane, the modelling on the solution-diffusion permeation mechanism was built up on the basis of sorption and permeation experimental results. Also its function type and parameter were examined. The composition of sorption equilibrium in three component system(Ethanol/Water/CTA) were compared with the calculated value by Flory-Huggins' equation using the pure component sorption data. In order to apply the thermodynamic equilibrium relationship between the membrane free composition in the membrane and the equilibrium composition in the liquid phase, the apparent activity this system, however, the results were not satisfied. Diffusion equations were expressed with the concentration gradient considering permeate alone, and a concentration-dependent diffusion coefficient which includes a parameter was used. And this model was fitted with the measured permeation rates. If the permeation rate and the amount of sorption of one component were much larger than those of the other, the bulk flow term could not be negligible. The flux and selectivity were increased with increasing temperature, and with decreasing downstream pressure.

  • PDF

Effect of Nonwoven Support During Fabrication of Flat Sheet Membranes via Phase Inversion Method (상전이법 기반 평막 제조과정에서 부직포 영향 분석연구)

  • Kim, Minjae;Kim, Subin;Kim, Sumin;Lee, Hoik;Kim, Jeong F.
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.109-115
    • /
    • 2022
  • In this work, the effect of nonwoven support during fabrication of flat sheet membranes via nonsolvent-induced phase separation, was investigated in detail. It was found that dope solutions with low viscosity tend to penetrate through the nonwoven support during phase inversion, resulting in nonhomogeneous membranes. A simple soaking treatment of nonwoven support prevented such unwanted dope penetration, and resulted in membranes with higher water and solvent permeance performance. The dope penetration through nonwoven was more prominent in solutions with low viscosity, and the nonwoven soaking treatment not effective in solutions with high viscosity.

Formulation and Preparation of Sustained Release Pellet for Alfuzosin HCI Using Fluid-bed coater (유동층 코팅기를 이용한 염산알푸조신의 서방형 과립 설계 및 제조)

  • Na, Jin-Sang;Yoon, Yang-No;Seo, Hui;Jeong, Sang-Young;Park, Eun-Seok;Hwan, Sung-Joo;Shin, Byung-Cheol;Kim, Sung-Hoon;Cho, Sun-Hang
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.6
    • /
    • pp.387-392
    • /
    • 2008
  • Alfuzosin, an Alphal-adrenoceptor antagonist is used for the treatment of patients with voiding and in a lesser extent storage lower urinary tract symptoms (LUTS) associated to benign prostatic hyperplasia (BPH). The objective of this study was to formulate sustained release alfuzosin HCl granules and assess their formulation variables. The $Eudragit^{(R)}$ as a polymer, sustained release membrane, and dibutyl sebacate (DBS) as a plasticizer were used. Multi-coated alfuzosin HCl delivery systems composed of sugar sphere, various excipients, $Eudragit^{(R)}$ and HPMC (hydroxy propyl methyl cellulose), Cellulose Acetate were prepared by fluid-bed coater. Membrane layer were used $Eudragit^{(R)}$ RS PO and NE 30D. And the alfuzosin HCl coated beads were coated immediate release drug layer for initial burst. Its dissolution test was carried out compared to conventional products ($XATRAL^{(R)}$ XL). The release rate of drug from coated beads was higher than that from $XATRAL^{(R)}$ XL in pH 6.8.

Remediation Groundwater contaminated with Nitrate and Phosphate using Micellar-enhanced ultrafiltration

  • 백기태;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.334-337
    • /
    • 2002
  • The drinking water industry faces a growing number of difficultiesin the treatment of groundwater for drinking water production. Groundwater sources are frequently contaminated with nitrates and phosphates due to usage of chemical fertilizer In this study, feasibility of micellar enhanced ultrafiltation (MEUF) was investigated to remediate groundwater contaminated with nitrate and phosphate. Ultrafiltration membrane was cellulose acetate with molecular weight cut off (MWCO) 10,000 and celtyl pyridinium chloride (CPC) was used to form pollutant-micelle complex with nitrate and phosphate. The results show that nitrate and phosphate rejections are satisfactory. The removal efficiency of nitrate and phosphate show 80% and 84% in single pollutant system, respectively with 3 molar ratio of CPC to pollutants. In the multi-pollutant systems, the removalefficiency increased to 90 % and 89 % for nitrate and phosphate, respectively, The presence of nitrate in the solutions did not affect the removal of phosphate and that of phosphate did not affect the removal of nitrate. The concentration of CPC in the permeate and removal efficiency of CPC was a function of the concentration of CPC in the feed solutions.

  • PDF

Electrochemical and Biochemical Analysis of Ethanol Fermentation of Zymomonas mobilis KCCM11336

  • Jeon, Bo-Young;Hwang, Tae-Sik;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.666-674
    • /
    • 2009
  • An electrochemical bioreactor (ECB) composed of a cathode compartment and an air anode was used in this study to characterize the ethanol fermentation of Zymomonas mobilis. The cathode and air anode were constructed of modified graphite felt with neutral red (NR) and a modified porous carbon plate with cellulose acetate and porous ceramic membrane, respectively. The air anode operates as a catalyst to generate protons and electrons from water. The growth and ethanol production of Z. mobilis were 50% higher in the ECB than were observed under anoxic nitrogen conditions. Ethanol production by growing cells and the crude enzyme of Z. mobilis were significantly lower under aerobic conditions than under other conditions. The growing cells and crude enzyme of Z. mobilis did not catalyze ethanol production from pyruvate and acetaldehyde. The membrane fraction of crude enzyme catalyzed ethanol production from glucose, but the soluble fraction did not. NADH was oxidized to $NAD^+$in association with $H_2O_2$reduction, via the catalysis of crude enzyme. Our results suggested that NADH/$NAD^+$balance may be a critical factor for ethanol production from glucose in the metabolism of Z. mobilis, and that the metabolic activity of both growing cells and crude enzyme for ethanol fermentation may be induced in the presence of glucose.

The Relationship between Affinity of Membrane and Optimum Operation Conditions in the Pervaporation of Aqueous Ethanol (에탄올 수용액의 투과증발에 있어서 막의 친화성과 최적 조업조건의 관계)

  • 전종기;명완재;임선기
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.34-43
    • /
    • 1991
  • The relationships between affinity of membranes and optimum operation conditions were investigated in the pervaporation of water(1)/ethanol(2) mixture through cellulose acetate(CA) membranes having more affinity to water and silicone rubber(SR) membranes having more affinity to ethanol. CA and SR membranes were prepared and amount of sorption, sorption selectivity, pervaporation separation factor and pervaporation rate in both of membranes were determined and compared. The effects of downstream pressure were analyzed using Thompson diagram and the sorption and pervaporation characteristics with composition of feed and operation temperature were examined in terms of affinity, activity coefficient, plasticizing effect and activation energy of individual species. In the separation of water through CA membranes, high performance of both pervaporation separation factor (water to ethanol, $[\alpha^2_1]_{PV}$) and pervaporation rate was obtained in the conditions of low downstream pressure, middle range of feed concentration and high temperature. In the separation of ethanol through SR membranes, pervaporation separation factor(ethanol to water, $[\alpha^2_1]_{PV}$) increased with downstream pressure and decreased with concentration of ethanol in feed and operation temperature, while pervaporation rate showed opposite trends to those of ($[\alpha^2_1]_{PV}$).

  • PDF

Detection of Fish Pathogenic Viruses in Seawater Using Negatively Charged Membranes (Negatively Charged Membrane을 이용한 해수 중 어류질병바이러스의 검출)

  • Jee, Bo Young;Kim, Kwang Il;Lee, Soon Jeong;Kim, Ki Hong;Jin, Ji Woong;Jeong, Hyun Do
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.1
    • /
    • pp.46-52
    • /
    • 2013
  • After an outbreak of viral disease in an aquafarm, release of virus (es) from infected fish into environmental seawater has been suspected. In the present study, we utilized a negatively charged membrane (HA type) as an efficient method for concentration and detection of fish pathogenic viruses, specifically, megalocytivirus and viral hemorrhagic septicemia virus (VHSV) present in field-collected seawater samples or inoculated into seawater artificially. Positively charged viruses adsorbed onto the negatively charged membrane and were eluted with 1 mM NaOH (pH 10.5) following rinsing with 0.5 mM $H_2SO_4$ (pH 3.0). Megalocytivirus and VHSV particles isolated using anegatively charged HA membrane from seawater inoculated with each virus at a concentration of 10 viral particles/mL were of sufficient quantity to show positive results in atwo-step PCR (or RT two-step PCR); however, despite it being negatively charged, a cellulose acetate (CA) membraneshowed negative results. In quantitative PCR, the detection limits of the HA membrane for megalocytivirus and VHSV in seawater were 1.20E+00 viral particles/mL and 1.22E+01 viralparticles/mL, respectively. The calculated mean recovery yields from 1 L seawater spiked with known concentrations of megalocytivirus and VHSV particles were 28.11% and 23.00%, respectively. The concentrate of a 1-L sample of culturing seawater from the aquatank of flounder suffering from VHSV showed clear positive results in PCR when isolated with an HA, but not a CA, membrane. Thus, viral isolation using an HA membrane is a practical and reliable method for detection of fish pathogenic viruses in seawater.

Phosphatidic Acid Production by PLD Covalently Immobilized on Porous Membrane (공유결합으로 다공성 막에 고정화된 PLD에 의한 포스퍼티딕산 생산)

  • Park, Jin-Won
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.224-228
    • /
    • 2015
  • Phospholipase D (PLD) was immobilized on a submicro-porous membrane through covalent immobilization. The immobilization was conducted on the porous membrane surface with the treatment of polyethyleneimine, glutaraldehyde, and the anhydrase, in sequence. The immobilization was confirmed using X-ray photon spectrometer. The pH values of phosphatidylcholine (PC) dispersion solution with buffer were monitored with respect to time to calculate the catalytic activities of PC for free and immobilized PLD. The catalytic rate constant values for free PLD, immobilized PLD on polystyrene nanoparticles, and immobilized PLD on a porous cellulose acetate membrane were 0.75, 0.64, and 0.52 s-1, respectively. Reusability was studied up to 10 cycles of PC hydrolysis. The activity for the PLD immobilized on the membrane was kept to 95% after 10 cycles, and comparable to the PLD on the nanoparticles. The stabilities for heat and storage were also investigated for the three cases. The results suggested that the PLD immobilized on the membrane had the least loss rate of the activity compared to the others. From these studies, the porous membrane was feasible as a carrier for the PLD immobilization in the production of phosphatidic acid.

Suitability of Counter-current Model for Biogas Separation Processes using Cellulose Acetate Hollow Fiber Membrane (셀룰로오스 아세테이트 중공사 분리막을 이용한 바이오가스 분리에 대한 향류 흐름 모델의 적용성)

  • Jung, Sang-Chul;Kwon, Ki-Wook;Jeon, Mi-Jin;Jeon, Yong-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.43-52
    • /
    • 2020
  • As the membrane gas separation technology grows, various models were developed by numerous researchers to describe the separation process. In this work, the counter-current model was compared thoroughly with experimental data. Experimentally, hollow fiber membrane using CA module was prepared for the separation of biogas. The pure gas permeation properties of membrane module for methane, nitrogen, oxygen, and carbon dioxide were measured. The permeance of CO2 and CH4 were 25.82 GPU and 0.65 GPU, respectively. The high CO2/CH4 selectivity of 39.7 was obtained. the separation test for three different simulated mixed gases were carried out after pure gas test, and the gas concentration of the permeate at various stage-cut were measured from CA membrane module. Results showed that the experimental data agreed with the numerical simulation. A mathematical model has implemented in this study for the separation of biogas using a membrane module. The finite difference method (FDM) is applied to calculate the membrane biogas separation behaviors. Futhermore, the counter-current model can be considered as a convenient model for biogas separation process.

Electrochemical Activation of Nitrate Reduction to Nitrogen by Ochrobactrum sp. G3-1 Using a Noncompartmented Electrochemical Bioreactor

  • Lee, Woo-Jin;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.836-844
    • /
    • 2009
  • A denitrification bacterium was isolated from riverbed soil and identified as Ochrobactrum sp., whose specific enzymes for denitrification metabolism were biochemically assayed or confirmed with specific coding genes. The denitrification activity of strain G3-1 was proportional to glucose/nitrate balance, which was consistent with the theoretical balance (0.5). The modified graphite felt cathode with neutral red, which functions as a solid electron mediator, enhanced the electron transfer from electrode to bacterial cell. The porous carbon anode was coated with a ceramic membrane and cellulose acetate film in order to permit the penetration of water molecules from the catholyte to the outside through anode, which functions as an air anode. A non-compartmented electrochemical bioreactor (NCEB) comprised of a solid electron mediator and an air anode was employed for cultivation of G3-1 cells. The intact G3-1 cells were immobilized in the solid electron mediator, by which denitrification activity was greatly increased at the lower glucose/nitrate balance than the theoretical balance (0.5). Metabolic stability of the intact G3-1 cells immobilized in the solid electron mediator was extended to 20 days, even at a glucose/nitrate balance of 0.1.