• Title/Summary/Keyword: Cellular immune responses

Search Result 310, Processing Time 0.024 seconds

Effects of Ethanol and Saccharin on the Immune Response in Rats (랏트에 있어서 에탄올과 삭카린이 면역반응에 미치는 영향)

  • 안영근;김주영;김정훈;염정열
    • Environmental Analysis Health and Toxicology
    • /
    • v.2 no.1_2
    • /
    • pp.33-42
    • /
    • 1987
  • Experiments were performed to investigate effects of ethanol and saccharin on the immune system in rats. 4% ethanol and 0.02, 0.20, 2.00% saccharin solution in 4% ethanol were provided ad libitum by tap water for 4 weeks. Rats were sensitized and challenged with sheep red blood cells (S-RBC). Immune responses were evaluated by relative immuno organ weight, antibody production, Arthus reaction, delayed type hypersensitivity, and rosette forming cell. Ethanol exposure decreased thymus weight and delayed type hypersensitivity. A combined solution of ethanol and saccharin decreased water intake, growth rate, spleen weight, thymus weight, humoral and cellular immune response. Especially, a 2% saccharin solution in 4% ethanol very significantly suppressed cellular immunity.

  • PDF

Use of Cell-Penetrating Peptides in Dendritic Cell-Based Vaccination

  • Sangho Lim;Ja-Hyun Koo;Je-Min Choi
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.33-43
    • /
    • 2016
  • Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4+ and CD8+ T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination.

Enhancement of Immune Responses by Culture Filtrates from Pigmented and Nonpigmented Serratia marcescens and the Suceptibility of the Organisms to Antibiotics and Human Sera (색소생산 및 색소비생산 Serratia marcescens배양액에 의한 면역반응항진과 균의 항균제 및 인혈청에 대한 내성)

  • Ha, Tai-You;Im, Suhn-Young;Kim, Jae-Huen
    • The Journal of the Korean Society for Microbiology
    • /
    • v.20 no.1
    • /
    • pp.45-53
    • /
    • 1985
  • This study was undertaken to assess the susceptibility of pigmented and nonpigmented strains of Serratia marcescens to antibiotics and human sera, and the effect of culture filtrates from pigmented and nonpigmented of Serratia marcescens on humoral and cellular immune responses in mice to thymus-dependent and indepependent antigens. Humoral immune response was measured by hemagglutinin (HA) and hemolysin (HE) to sheep red blood cell (SRBC), and Arthus or antibody response to polyvinylpyrrolidone (PVP). The cellular immune response was measured by delayed-type hypersensitivity (DTH) determined by footpad swelling reactin to SRBC. The resistance of pigmented strains of Serratia marcescens to the bactericidal action of heat inactivated human serum was insignificantly greater than that of nonpigmented strains. However, the pigmented strains were significantly more resistant to the bactericidal action of heat-untreated human serum than that of nonpigmented strains. The clinical isolates of Serratia marcestens was also tested for their resistance to several antibiotics. There was no difference between the pigmented and non-pigmented strains in the resistance to carbenicillin. However, nonpigmented strains were more resistant to gentamicin, kanamycin and tobramycin than the pigmented strains. The intraperitoneal administration of culture filtrates from the pigmented or nonpigmented strains into mice caused enhancemented of antibody response to SRBC or PVP, and of DTH to SRBC. Besides, their enhancement of immune responses was more prominent when culture filtrate from the pigmented strains was administered.

  • PDF

Aging of Immune System (면역 반응체계의 노화)

  • Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.817-823
    • /
    • 2019
  • Immune system provides defense integrity of body against external invaders. In order to accomplish the important defending role immune system is composed of many different components which are regenerated continuously during lifespan. The key components are professional killing cells such as macrophage, neutrophil, natural killer cell, and cytotoxic T cell and professional blocking molecule, antibody, which is produced by plasma cell, the terminal differentiated B cell. Immune response is orchestrated harmoniously by all these components mediated through antigen presenting cells such as dendritic cells. Immune responses can be divided into two ways: innate immune response and adaptive immune response depending on induction mechanism. Aging is a broad spectrum of physiological changes. Likewise other physiological changes, the immune components and responses are wane as aging is progressing. Immune responses become decline and dysregulating, which is called immunosenescense. Immune components of both innate and adaptive immune response are affected as aging progresses leading to increased vulnerability to infectious diseases. Numbers of immune cells and amounts of soluble immune factors were decreased in aged animal models and human and also functional and structural alterations in immune system were reduced and declined. Cellular intrinsic changes were discovered as well. Recent researches focusing on aging have been enormously growing. Many advanced tools were developed to bisect aging process in multi-directions including immune system area. This review will provide a broad overview of aging-associated changes of key components of immunity.

The Effect of Ethanol Administration on The Immune Response of Mice (에타놀투여가 마우스의 면역반응에 미치는 영향에 관한 실험적 연구)

  • 김금재
    • Journal of Korean Academy of Nursing
    • /
    • v.21 no.1
    • /
    • pp.5-15
    • /
    • 1991
  • The present study was undertaken in an effort to investigate the effects of alcohol on survival of mice and on their humoral and cellular immune responses, The immune responses examined were Arthus and delayed-type hyperrsnesitivity(DTH) reactions to sheep red blood cells(SRBC), contact hypersensitivity to dinitrofluorobenzend(DNFB), antibody response to thymus - dependent SRBC and to thymus -independent polyvinylpyroridone(PVP), and the recovery of Crytococcus neoformans from the liver, spleen, kidney and brain of experimentally infected mice. The administration of ethanol concentrations of 20% or less did not cause any change in survival rates as compared withs saline injected control group. In general, ethanol administration inhibited the Arthus and DTH reactions to SRBC, contact hypersensitivity to DNFB, and antibody response to both SRBC and PVP and it also decreased the resistance of mice to C. neoformans infection. Taken together, the present study stongly suggested that ethanol inhibits immune response and decrease the resistance of mice to C. neoformans infection.

  • PDF

Comparison of immunoadjuvant activities of four bursal peptides combined with H9N2 avian influenza virus vaccine

  • Zhang, Cong;Zhou, Jiangfei;Liu, Zhixin;Liu, Yongqing;Cai, Kairui;Shen, Tengfei;Liao, Chengshui;Wang, Chen
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.817-826
    • /
    • 2018
  • The bursa of Fabricius (BF) is a central humoral immune organ unique to birds. Four bursal peptides (BP-I, BP-II, BP-III, and BP-IV) have been isolated and identified from the BF. In this study, the immunoadjuvant activities of BPs I to IV were examined in mice immunized with H9N2 avian influenza virus (AIV) vaccine. The results suggested that BP-I effectively enhanced cell-mediated immune responses, increased the secretion of Th1 (interferon gamma)- and Th2 (interleukin-4)-type cytokines, and induced an improved cytotoxic T-lymphocyte (CTL) response to the H9N2 virus. BP-II mainly elevated specific antibody production, especially neutralizing antibodies, and increased Th1- and Th2-type cytokine secretion. BP-III had no significant effect on antibody production or cell-mediated immune responses compared to those in the control group. A strong immune response at both the humoral and cellular levels was induced by BP-IV. Furthermore, a virus challenge experiment followed by H&E staining revealed that BP-I and BP-II promoted removal of the virus and conferred protection in mouse lungs. BP-IV significantly reduced viral titers and histopathological changes and contributed to protection against H9N2 AIV challenge in mouse lungs. This study further elucidated the immunoadjuvant activities of BPs I to IV, providing a novel insight into immunoadjuvants for use in vaccine design.

MiT Family Transcriptional Factors in Immune Cell Functions

  • Kim, Seongryong;Song, Hyun-Sup;Yu, Jihyun;Kim, You-Me
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.342-355
    • /
    • 2021
  • The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.

Effects of Zinc chloride on the Immunobiological Responses of Lipopolysaccharide (리포폴리사카라이드의 면역생물학적 반응에 미치는 염화아연의 영향)

  • 채병숙
    • YAKHAK HOEJI
    • /
    • v.43 no.1
    • /
    • pp.48-54
    • /
    • 1999
  • Effects of zinc chloride (Zn) on the immune responses of lipopolysaccharide (LPS) were studied by using ICR mice. Mice were divided into 4 groups (10 mice/group), and Zn was given to the mice with i.p. injection at 0.3 mg/kg 5 times a week for 14 days, and 1 hr after Zn administration, LPS was given with i.p. injection at 5 mg/kg twice a week. Mice were immunized and challenged with sheep red blood cells (SRBC). Immunobiological responses were evaluated by humoral, cellular and nonspecific immunity. LPS treatment significantly increased the relative weights of spleen and thymus, hemagglutination titer (HA) and proliferation of splenocytes compared with those in controls, but significantly decreased the body weight gain. Zn treatment significantly increased proliferation of splenocytes and circulating leukocytes compared with those in controls. Combination of Zn and LPS significantly decreased the body weight gain and proliferation of splenocytes compared with those in controls. Combination of Zn and LPS significantly decreased HA and proliferation of splenocytes than in LPS alone. These findings indicate that zinc lowered the humoral immune responses of LPS.

  • PDF

A Pneumococcal Conjugate Vaccine Formula Induces Protection in Mice Against Disseminated Disease due to Streptococcus pneumoniae (페렴구균 전신감염에 대한 협막. 표면단백질 접합백신의 효과)

  • Han , Yong-Moon;Lee , Jue-Hee
    • YAKHAK HOEJI
    • /
    • v.48 no.6
    • /
    • pp.345-351
    • /
    • 2004
  • ln the present work to determine effect of a Streptococcus pneumoniae conjugate vaccine, S.pneumoniae capsule attached to the surface protein (JY-Pol) was ex amined. This JY-Pol contained approximately 92% and 6% carbohydrate and protein, respectively. Gel electrophoresis revealed the presence of the surface protein in the JY-Pol. By the double immunodiffusion and isotyping ELISA analyses, administration of JY-Pol that was adsorbed to alum adjuvant (JY-Pol/Alum) into mice induced IgM, IgG, and IgA specific for the S.pneumoniae capsule. The ATCC capsular polysaccharide adsorbed to alum (ATCC-Pol/Alum) provoked only IgM in mice. In survival tests, mice that were immunized with the JY-Pol/Alum before intravenous challenge with live S.pneumoniae survived entire period of 46 day-observation, whereas all mice that received ATCC-Pol/Alum or only diluent instead of the vaccination died within 5 and 12 days, respectively. Results from footpad-edema test showed that JY-Pol/Alum formula provoked the cellular immunity as determined by swelling of the mouse footpad. These data indicate that the naturally conjugated JY- Pol enhances resistance of mice against disseminated pneumococcal disease due to S.pneumoniae by both humoral and cellular immune responses.

Innate Type-2 Cytokines: From Immune Regulation to Therapeutic Targets

  • Hye Young Kim;Dongjin Jeong;Ji Hyung Kim;Doo Hyun Chung
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.6.1-6.17
    • /
    • 2024
  • The intricate role of innate type-2 cytokines in immune responses is increasingly acknowledged for its dual nature, encompassing both protective and pathogenic dimensions. Ranging from defense against parasitic infections to contributing to inflammatory diseases like asthma, fibrosis, and obesity, these cytokines intricately engage with various innate immune cells. This review meticulously explores the cellular origins of innate type-2 cytokines and their intricate interactions, shedding light on factors that amplify the innate type-2 response, including TSLP, IL-25, and IL-33. Recent advancements in therapeutic strategies, specifically the utilization of biologics targeting pivotal cytokines (IL-4, IL-5, and IL-13), are discussed, offering insights into both challenges and opportunities. Acknowledging the pivotal role of innate type-2 cytokines in orchestrating immune responses positions them as promising therapeutic targets. The evolving landscape of research and development in this field not only propels immunological knowledge forward but also holds the promise of more effective treatments in the future.