• Title/Summary/Keyword: Cellular and molecular mechanisms

Search Result 658, Processing Time 0.029 seconds

Mechanisms and Physiological Roles of Mitophagy in Yeast

  • Fukuda, Tomoyuki;Kanki, Tomotake
    • Molecules and Cells
    • /
    • v.41 no.1
    • /
    • pp.35-44
    • /
    • 2018
  • Mitochondria are responsible for supplying of most of the cell's energy via oxidative phosphorylation. However, mitochondria also can be deleterious for a cell because they are the primary source of reactive oxygen species, which are generated as a byproduct of respiration. Accumulation of mitochondrial and cellular oxidative damage leads to diverse pathologies. Thus, it is important to maintain a population of healthy and functional mitochondria for normal cellular metabolism. Eukaryotes have developed defense mechanisms to cope with aberrant mitochondria. Mitochondria autophagy (known as mitophagy) is thought to be one such process that selectively sequesters dysfunctional or excess mitochondria within double-membrane autophagosomes and carries them into lysosomes/vacuoles for degradation. The power of genetics and conservation of fundamental cellular processes among eukaryotes make yeast an excellent model for understanding the general mechanisms, regulation, and function of mitophagy. In budding yeast, a mitochondrial surface protein, Atg32, serves as a mitochondrial receptor for selective autophagy that interacts with Atg11, an adaptor protein for selective types of autophagy, and Atg8, a ubiquitin-like protein localized to the isolation membrane. Atg32 is regulated transcriptionally and post-translationally to control mitophagy. Moreover, because Atg32 is a mitophagy-specific protein, analysis of its deficient mutant enables investigation of the physiological roles of mitophagy. Here, we review recent progress in the understanding of the molecular mechanisms and functional importance of mitophagy in yeast at multiple levels.

Molecular and Cellular Mechanisms of Syndecans in Tissue Injury and Inflammation

  • Bartlett, Allison H.;Hayashida, Kazutaka;Park, Pyong Woo
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.153-166
    • /
    • 2007
  • The syndecan family of heparan sulfate proteoglycans is expressed on the surface of all adherent cells. Syndecans interact with a wide variety of molecules, including growth factors, cytokines, proteinases, adhesion receptors and extracellular matrix components, through their heparan sulfate chains. Recent studies indicate that these interactions not only regulate key events in development and homeostasis, but also key mechanisms of the host inflammatory response. This review will focus on the molecular and cellular aspects of how syndecans modulate tissue injury and inflammation, and how syndecans affect the outcome of inflammatory diseases in vivo.

Chemoprevention and Chemoprotection Through Heme Oxygenase-1 Induction and Underlying Molecular Mechanisms (Heme oxygenase-1 유도를 통한 화학 암예방 및 세포보호와 그 분자생물학적 기전)

  • Kim, Eun-Hee;Kim, Sung-Hwan;Na, Hye-Kyung;Surh, Young-Joon
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.4
    • /
    • pp.97-112
    • /
    • 2006
  • Heme oxygenase(HO)-1 is an important antioxidant enzyme that plays a pivotal role in cellular adaptation and protection in response to a wide array of noxious stimuli. Thus, HO-1 induction has been associated with prevention or mitigation of pathogenesis of various diseases, including acute inflammation, atherosclerosis, degenerative diseases, and carcinogenesis. Recent progress in our understanding of the function of molecules in the cellular signaling network as key modulators of gene transcription sheds light on the molecular mechanisms underlyuing HO-1 gene expression. A panel of redox-sensitive transcription factors such as activator protein-1, nuclear factor-kB, and nuclear factor E2-related factor-2, and some of the upstream kinases have been identified as prime regulators of HO-1 gene induction. This review summarizes molecular mechanisms underlying HO-1 expression and the significance of targeted induction of HO-1 as a potential chemopreventive or chemoprotective strategy.

  • PDF

Deciphering the molecular mechanisms of epitranscriptome regulation in cancer

  • Han, Seung Hun;Choe, Junho
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.89-97
    • /
    • 2021
  • Post-transcriptional regulation is an indispensable cellular mechanism of gene expression control that dictates various cellular functions and cell fate decisions. Recently, various chemical RNA modifications, termed the "epitranscriptome," have been proposed to play crucial roles in the regulation of post-transcriptional gene expression. To date, more than 170 RNA modifications have been identified in almost all types of RNA. As with DNA modification-mediated control of gene expression, regulation of gene expression via RNA modification is also accomplished by three groups of proteins: writers, readers, and erasers. Several emerging studies have revealed that dysregulation in RNA modification is closely associated with tumorigenesis. Notably, the molecular outcomes of specific RNA modifications often have opposite cellular consequences. In this review, we highlight the current progress in the elucidation of the mechanisms of cancer development due to chemical modifications of various RNA species.

Regulation of Early Steps of Chondrogenesis in the Developing Limb

  • Kang, Shin-Sung
    • Animal cells and systems
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • In the developing limb, chondrogenesis is an important prerequisite for the formation of cartilage whose template is required for bone formation. Chondrogenesis is a tightly regulated multi-step process, including mesenchymal cell recruitment/migration, prechondrogenic condensation of the mesenchymal cells, commitment to the chondrogenic lineage, and differentiation into chondrocytes. This process is controlled exquisitely by cellular interactions with the surrounding matrix and regulating factors that initiate or suppress cellular signaling pathways and transcription of specific genes in a temporal-spatial manner. Understanding the cellular and molecular mechanisms of chondrogenesis is important not only in the context of establishing basic principle of developmental biology but also in providing research direction toward preventive and/or regenerative medicine. Here, I will overview the current understanding of cellular and molecular mechanisms contributing to prechondrogenic condensation processes, the crucial steps for chondrogenesis, focusing on cell-cell and cell-matrix interactions.

Mechanisms of Macromolecular Interactions Mediated by Protein Intrinsic Disorder

  • Hong, Sunghyun;Choi, Sangmin;Kim, Ryeonghyeon;Koh, Junseock
    • Molecules and Cells
    • /
    • v.43 no.11
    • /
    • pp.899-908
    • /
    • 2020
  • Intrinsically disordered proteins or regions (IDPs or IDRs) are widespread in the eukaryotic proteome. Although lacking stable three-dimensional structures in the free forms, IDRs perform critical functions in various cellular processes. Accordingly, mutations and altered expression of IDRs are associated with many pathological conditions. Hence, it is of great importance to understand at the molecular level how IDRs interact with their binding partners. In particular, discovering the unique interaction features of IDRs originating from their dynamic nature may reveal uncharted regulatory mechanisms of specific biological processes. Here we discuss the mechanisms of the macromolecular interactions mediated by IDRs and present the relevant cellular processes including transcription, cell cycle progression, signaling, and nucleocytoplasmic transport. Of special interest is the multivalent binding nature of IDRs driving assembly of multicomponent macromolecular complexes. Integrating the previous theoretical and experimental investigations, we suggest that such IDR-driven multiprotein complexes can function as versatile allosteric switches to process diverse cellular signals. Finally, we discuss the future challenges and potential medical applications of the IDR research.

Peroxiredoxins in Regulation of MAPK Signalling Pathways; Sensors and Barriers to Signal Transduction

  • Latimer, Heather R.;Veal, Elizabeth A.
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • Peroxiredoxins are highly conserved and abundant peroxidases. Although the thioredoxin peroxidase activity of peroxiredoxin (Prx) is important to maintain low levels of endogenous hydrogen peroxide, Prx have also been shown to promote hydrogen peroxide-mediated signalling. Mitogen activated protein kinase (MAPK) signalling pathways mediate cellular responses to a variety of stimuli, including reactive oxygen species (ROS). Here we review the evidence that Prx can act as both sensors and barriers to the activation of MAPK and discuss the underlying mechanisms involved, focusing in particular on the relationship with thioredoxin.

Functional roles of protein phosphatase 4 in multiple aspects of cellular physiology: a friend and a foe

  • Park, Jaehong;Lee, Dong-Hyun
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.181-190
    • /
    • 2020
  • Protein phosphatase 4 (PP4), one of serine/threonine phosphatases, is involved in many critical cellular pathways, including DNA damage response (DNA repair, cell cycle regulation, and apoptosis), tumorigenesis, cell migration, immune response, stem cell development, glucose metabolism, and diabetes. PP4 has been steadily studied over the past decade about wide spectrum of physiological activities in cells. Given the many vital functions in cells, PP4 has great potential to develop into the finding of key working mechanisms and effective treatments for related diseases such as cancer and diabetes. In this review, we provide an overview of the cellular and molecular mechanisms by which PP4 impacts and also discuss the functional significance of it in cell health.

Tumour Suppressor Mechanisms in the Control of Chromosome Stability: Insights from BRCA2

  • Venkitaraman, Ashok R.
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.95-99
    • /
    • 2014
  • Cancer is unique amongst human diseases in that its cellular manifestations arise and evolve through the acquisition of somatic alterations in the genome. In particular, instability in the number and structure of chromosomes is a near-universal feature of the genomic alterations associated with epithelial cancers, and is triggered by the inactivation of tumour suppressor mechanisms that preserve chromosome integrity in normal cells. The nature of these mechanisms, and how their inactivation promotes carcinogenesis, remains enigmatic. I will review recent work from our laboratory on the tumour suppressor BRCA2 that addresses these issues, focusing on new insights into cancer pathogenesis and therapy that are emerging from improved understanding of the molecular basis of chromosomal instability in BRCA2-deficient cancer cells.

The Pleiotropic Face of CREB Family Transcription Factors

  • Md. Arifur Rahman Chowdhury;Jungeun An;Sangyun Jeong
    • Molecules and Cells
    • /
    • v.46 no.7
    • /
    • pp.399-413
    • /
    • 2023
  • cAMP responsive element-binding protein (CREB) is one of the most intensively studied phosphorylation-dependent transcription factors that provide evolutionarily conserved mechanisms of differential gene expression in vertebrates and invertebrates. Many cellular protein kinases that function downstream of distinct cell surface receptors are responsible for the activation of CREB. Upon functional dimerization of the activated CREB to cis-acting cAMP responsive elements within the promoters of target genes, it facilitates signal-dependent gene expression. From the discovery of CREB, which is ubiquitously expressed, it has been proven to be involved in a variety of cellular processes that include cell proliferation, adaptation, survival, differentiation, and physiology, through the control of target gene expression. In this review, we highlight the essential roles of CREB proteins in the nervous system, the immune system, cancer development, hepatic physiology, and cardiovascular function and further discuss a wide range of CREB-associated diseases and molecular mechanisms underlying the pathogenesis of these diseases.