DOI QR코드

DOI QR Code

Peroxiredoxins in Regulation of MAPK Signalling Pathways; Sensors and Barriers to Signal Transduction

  • Latimer, Heather R. (Institute for Cell and Molecular Biosciences, Newcastle University) ;
  • Veal, Elizabeth A. (Institute for Cell and Molecular Biosciences, Newcastle University)
  • Received : 2015.11.30
  • Accepted : 2015.12.03
  • Published : 2016.01.31

Abstract

Peroxiredoxins are highly conserved and abundant peroxidases. Although the thioredoxin peroxidase activity of peroxiredoxin (Prx) is important to maintain low levels of endogenous hydrogen peroxide, Prx have also been shown to promote hydrogen peroxide-mediated signalling. Mitogen activated protein kinase (MAPK) signalling pathways mediate cellular responses to a variety of stimuli, including reactive oxygen species (ROS). Here we review the evidence that Prx can act as both sensors and barriers to the activation of MAPK and discuss the underlying mechanisms involved, focusing in particular on the relationship with thioredoxin.

Keywords

References

  1. Bokov, A., Chaudhuri, A., and Richardson, A. (2004). The role of oxidative damage and stress in aging. Mech. Ageing Dev. 125, 811-826. https://doi.org/10.1016/j.mad.2004.07.009
  2. Bozonet, S.M., Findlay, V.J., Day, A.M., Cameron, J., Veal, E.A., and Morgan, B.A. (2005). Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J. Biol. Chem. 280, 23319-23327. https://doi.org/10.1074/jbc.M502757200
  3. Brown, J.D., Day, A.M., Taylor. S.R., Tomalin, L.E., Morgan, B.A., and Veal, E.A.. (2013). A peroxiredoxin promotes H2O2 signaling and oxidative stress resistance by oxidizing a thioredoxin family protein. Cell Rep. 5, 1425-1435. https://doi.org/10.1016/j.celrep.2013.10.036
  4. Cao, J., Schulte, J., Knight, A., Leslie, N.R., Zagozdzon, A., Bronson, R., Manevich, Y., Beeson, C., and Neumann, C.A. (2009). Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity. EMBO J. 28, 1505-1517. https://doi.org/10.1038/emboj.2009.101
  5. Choi, M.H., Lee, I.K., Kim, G.W., Kim, B.U., Han, Y.H., Yu, D.Y., Park, H.S., Kim, K.Y., Lee, J.S., Choi. C., et al. (2005). Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435, 347-353. https://doi.org/10.1038/nature03587
  6. Conway, J.P., and Kinter, M. (2006). Dual role of peroxiredoxin I in macrophage-derived foam cells. J. Biol. Chem. 281, 27991-28001. https://doi.org/10.1074/jbc.M605026200
  7. da Silva Dantas, A., Patterson, M.J., Smith, D.A., Maccallum, D.M., Erwig, L.P., Morgan, B.A., and Quinn, J. (2010). Thioredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans. Mol. Cell. Biol. 30, 4550-4563. https://doi.org/10.1128/MCB.00313-10
  8. Day, A.M., and Veal, E.A. (2010). Hydrogen peroxide-sensitive cysteines in the Sty1 MAPK regulate the transcriptional response to oxidative stress. J. Biol. Chem. 285, 7505-7516. https://doi.org/10.1074/jbc.M109.040840
  9. Day, A.M., Brown, J.D., Taylor, S.R., Rand, J.D., Morgan, B.A., and Veal EA. (2012). Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival. Mol. Cell 45, 398-408. https://doi.org/10.1016/j.molcel.2011.11.027
  10. Gotoh, Y., and Cooper, J.A. (1998). Reactive oxygen species- and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-alpha signal transduction. J. Biol. Chem. 273, 17477-17482. https://doi.org/10.1074/jbc.273.28.17477
  11. Gutteridge, J.M.C., and Halliwell, B. (1999). Free Radicals in Biology and Medicine. (Oxford, UK: Oxford University Press).
  12. Hashimoto, S., Gon, Y., Matsumoto, K., Takeshita, I., and Horie, T. (2001). N-acetylcysteine attenuates TNF-alpha-induced p38 MAP kinase activation and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells. Br J. Pharmacol. 132, 270-276. https://doi.org/10.1038/sj.bjp.0703787
  13. Holmgren, A., and Lu, J. (2010). Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem. Biophys. Res. Commun. 396, 120-124. https://doi.org/10.1016/j.bbrc.2010.03.083
  14. Holmström, K.M., and Finkel, T. (2014). Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15, 411-421. https://doi.org/10.1038/nrm3801
  15. Ichijo, H., Nishida, E., Irie, K., ten Dijke, P., Saitoh, M., Moriguchi, T., Takagi, M., Matsumoto, K., Miyazono, K., and Gotoh, Y. (1997). Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275, 90-94. https://doi.org/10.1126/science.275.5296.90
  16. Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J.W., et al. (2004). Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117, 625-635. https://doi.org/10.1016/j.cell.2004.05.002
  17. Jarvis, R.M., Hughes, S.M., and Ledgerwood, E.C. (2012). Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic. Biol. Med. 53, 1522-1530. https://doi.org/10.1016/j.freeradbiomed.2012.08.001
  18. Kang, S.W., Chang, T.S., Lee, T.H., Kim, E.S., Yu, D.Y., and Rhee, S.G. (2004). Cytosolic peroxiredoxin attenuates the activation of Jnk and p38 but potentiates that of Erk in Hela cells stimulated with tumor necrosis factor-alpha. J. Biol. Chem. 279, 2535-2543. https://doi.org/10.1074/jbc.M307698200
  19. Kil, I.S., Lee, S.K., Ryu, K.W., Woo, H.A., Hu, M.C., Bae, S.H., and Rhee, S.G. (2012). Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 46, 584-594. https://doi.org/10.1016/j.molcel.2012.05.030
  20. Kil, I.S., Ryu, K.W., Lee, S.K., Kim, J.Y., Chu, S.Y., Kim, J.H., Park, S., and Rhee, S.G. (2015). Circadian oscillation of sulfiredoxin in the mitochondria. Mol. Cell 59, 651-663. https://doi.org/10.1016/j.molcel.2015.06.031
  21. Kwon, J., Lee, S.R., Yang, K.S., Ahn, Y., Kim, Y.J., Stadtman, E.R., and Rhee, S.G. (2004). Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc. Natl. Acad. Sci. USA 101, 16419-16424. https://doi.org/10.1073/pnas.0407396101
  22. Marshall, C.J. (1994). MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr. Opin. Genet. Dev. 4, 82-89. https://doi.org/10.1016/0959-437X(94)90095-7
  23. Nadeau, P.J., Charette, S.J., Toledano, M.B., and Landry, J. (2007). Disulfide Bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis. Mol. Biol. Cell 18, 3903-3913. https://doi.org/10.1091/mbc.E07-05-0491
  24. Nadeau, P.J., Charette, S.J., and Landry, J. (2009). REDOX reaction at ASK1-Cys250 is essential for activation of JNK and induction of apoptosis. Mol. Biol. Cell 20, 3628-3637. https://doi.org/10.1091/mbc.E09-03-0211
  25. Nguyen, A.N., and Shiozaki, K. (1999). Heat-shock-induced activation of stress MAP kinase is regulated by threonine- and tyrosine-specific phosphatases. Genes Dev. 13, 1653-1663. https://doi.org/10.1101/gad.13.13.1653
  26. Okazaki, S., Naganuma, A., and Kuge, S. (2005). Peroxiredoxinmediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast. Antioxid. Redox Signal. 7, 327-334. https://doi.org/10.1089/ars.2005.7.327
  27. Olahova, M., Taylor, S.R., Khazaipoul, S., Wang, J., Morgan, B.A., Matsumoto, K., Blackwell, T.K., and Veal, E.A. (2008). A redoxsensitive peroxiredoxin that is important for longevity has tissueand stress-specific roles in stress resistance. Proc. Natl. Acad. Sci. USA 105, 19839-19844. https://doi.org/10.1073/pnas.0805507105
  28. Ross, S.J., Findlay, V.J., Malakasi, P., and Morgan, B.A. (2000). Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast. Mol. Biol. Cell 11, 2631-2642. https://doi.org/10.1091/mbc.11.8.2631
  29. Sabio, G., and Davis, R.J. (2014). TNF and MAP kinase signalling pathways. Semin. Immunol. 26, 237-245. https://doi.org/10.1016/j.smim.2014.02.009
  30. Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Tobiume, K., Sawada, Y., Kawabata, M., Miyazono, K., and Ichijo, H. (1998). Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 17, 2596-2606. https://doi.org/10.1093/emboj/17.9.2596
  31. Schwertassek, U., Haque, A., Krishnan, N., Greiner, R., Weingarten, L., Dick, T.P., and Tonks, N.K. (2014). Reactivation of oxidized PTP1B and PTEN by thioredoxin 1. FEBS J, 281, 3545-3558. https://doi.org/10.1111/febs.12898
  32. Sobotta, M.C., Liou, W., Stocker, S., Talwar, D., Oehler, M., Ruppert, T., Scharf, A.N., and Dick, T.P. (2015). Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat. Chem. Biol. 11, 64-70. https://doi.org/10.1038/nchembio.1695
  33. Taniuchi, K., Furihata, M., Hanazaki, K., Iwasaki, S., Tanaka, K., Shimizu, T., Saito, M., and Saibara, T. (2015). Peroxiredoxin 1 promotes pancreatic cancer cell invasion by modulating p38 MAPK activity. Pancreas 44, 331-340. https://doi.org/10.1097/MPA.0000000000000270
  34. Tobiume, K., Matsuzawa, A., Takahashi, T., Nishitoh, H., Morita, K., Takeda, K., Minowa, O., Miyazono, K., Noda, T., and Ichijo, H. (2001). ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2, 222-228. https://doi.org/10.1093/embo-reports/kve046
  35. Toone, W.M., and Jones, N. (1998). Stress-activated signalling pathways in yeast. Genes Cells 3, 485-498. https://doi.org/10.1046/j.1365-2443.1998.00211.x
  36. Turner-Ivey, B., Manevich, Y., Schulte, J., Kistner-Griffin, E., Jezierska-Drutel, A., Liu, Y., and Neumann, C.A. (2013). Role for Prdx1 as a specific sensor in redox-regulated senescence in breast cancer. Oncogene 32, 5302-5314. https://doi.org/10.1038/onc.2012.624
  37. Veal, E., and Day, A. (2011). Hydrogen peroxide as a signaling molecule. Antioxid. Redox Signal. 15, 147-151. https://doi.org/10.1089/ars.2011.3968
  38. Veal, E.A., Findlay, V.J., Day, A.M., Bozonet, S.M., Evans, J.M., Quinn, J., and Morgan, B.A. (2004). A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stressactivated MAP kinase. Mol. Cell 15, 129-139. https://doi.org/10.1016/j.molcel.2004.06.021
  39. Veal, E.A., Tomalin, L.E., Morgan, B.A., and Day, A.M. (2014). The fission yeast Schizosaccharomyces pombe as a model to understand how peroxiredoxins influence cell responses to hydrogen peroxide. Biochem. Soc. Trans. 42, 909-916. https://doi.org/10.1042/BST20140059
  40. Vivancos AP1, Castillo EA, Biteau B, Nicot C, Ayté J, Toledano MB, Hidalgo E. (2005). A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway. Proc. Natl. Acad. Sci. USA 102, 8875-8880. https://doi.org/10.1073/pnas.0503251102
  41. Winterbourn, C.C. (2008). Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 4, 278-286. https://doi.org/10.1038/nchembio.85
  42. Woo, H.A., Yim, S.H., Shin, D.H., Kang, D., Yu, D.Y., and Rhee, S.G. (2010). Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 140, 517-528. https://doi.org/10.1016/j.cell.2010.01.009
  43. Wood, Z.A., Schröder, E., Robin Harris, J., and Poole, L.B. (2003). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32-40. https://doi.org/10.1016/S0968-0004(02)00003-8
  44. Yang, C.S., Lee, D.S., Song, C.H., An, S.J., Li, S., Kim, J.M., Kim, C.S., Yoo, D.G., Jeon, B.H., Yang, H.Y., et al. (2007). Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin-induced lethal shock. J. Exp. Med. 204, 583-594. https://doi.org/10.1084/jem.20061849
  45. Yang, K.S., Kang, S.W., Woo, H.A., Hwang, S.C., Chae, H.Z., Kim, K., and Rhee, S.G. (2002). Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277, 38029-38036. https://doi.org/10.1074/jbc.M206626200

Cited by

  1. Vitamin K2 Induces Mitochondria-Related Apoptosis in Human Bladder Cancer Cells via ROS and JNK/p38 MAPK Signal Pathways vol.11, pp.8, 2016, https://doi.org/10.1371/journal.pone.0161886
  2. The Role of Peroxiredoxins in the Transduction of H2O2 Signals 2018, https://doi.org/10.1089/ars.2017.7167
  3. Overview on Peroxiredoxin vol.39, pp.1, 2016, https://doi.org/10.14348/molcells.2016.2368
  4. An Atlas of Peroxiredoxins Created Using an Active Site Profile-Based Approach to Functionally Relevant Clustering of Proteins vol.13, pp.2, 2017, https://doi.org/10.1371/journal.pcbi.1005284
  5. Differential representation of liver proteins in obese human subjects suggests novel biomarkers and promising targets for drug development in obesity vol.32, pp.1, 2017, https://doi.org/10.1080/14756366.2017.1292262
  6. Experimentally Dissecting the Origins of Peroxiredoxin Catalysis 2017, https://doi.org/10.1089/ars.2016.6922
  7. Dietary oxidized tyrosine (O-Tyr) stimulates TGF-β1-induced extracellular matrix production via the JNK/p38 signaling pathway in rat kidneys vol.49, pp.2, 2017, https://doi.org/10.1007/s00726-016-2353-6
  8. The active site architecture in peroxiredoxins: a case study on Mycobacterium tuberculosis AhpE vol.52, pp.67, 2016, https://doi.org/10.1039/C6CC02645A
  9. Aspergillus fumigatus -induced early inflammatory response in pulmonary microvascular endothelial cells: Role of p38 MAPK and inhibition by silibinin vol.49, 2017, https://doi.org/10.1016/j.intimp.2017.05.038
  10. New Challenges to Study Heterogeneity in Cancer Redox Metabolism vol.5, 2017, https://doi.org/10.3389/fcell.2017.00065
  11. Activation of adrenergic receptor in H9c2 cardiac myoblasts co-stimulates Nox2 and the derived ROS mediate the downstream responses 2017, https://doi.org/10.1007/s11010-017-3088-8
  12. Enhancement of CCL2 expression and monocyte migration by CCN1 in osteoblasts through inhibiting miR-518a-5p: implication of rheumatoid arthritis therapy vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-00513-0
  13. Treatment with a JNK inhibitor increases, whereas treatment with a p38 inhibitor decreases, H2O2-induced calf pulmonary arterial endothelial cell death vol.14, pp.2, 2017, https://doi.org/10.3892/ol.2017.6330
  14. Visfatin Promotes IL-6 and TNF-α Production in Human Synovial Fibroblasts by Repressing miR-199a-5p through ERK, p38 and JNK Signaling Pathways vol.19, pp.1, 2018, https://doi.org/10.3390/ijms19010190
  15. Reactive Oxygen Species and Mitochondrial Dynamics: The Yin and Yang of Mitochondrial Dysfunction and Cancer Progression vol.7, pp.1, 2018, https://doi.org/10.3390/antiox7010013
  16. The Multifaceted Impact of Peroxiredoxins on Aging and Disease vol.29, pp.13, 2018, https://doi.org/10.1089/ars.2017.7452
  17. Signaling pp.1557-7716, 2019, https://doi.org/10.1089/ars.2017.7013
  18. KH176 Safeguards Mitochondrial Diseased Cells from Redox Stress-Induced Cell Death by Interacting with the Thioredoxin System/Peroxiredoxin Enzyme Machinery vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-24900-3
  19. Skullcapflavone II inhibits osteoclastogenesis by regulating reactive oxygen species and attenuates the survival and resorption function of osteoclasts by modulating integrin signaling vol.33, pp.2, 2019, https://doi.org/10.1096/fj.201800866RR
  20. Peroxiredoxin System of Aspergillus nidulans Resists Inactivation by High Concentration of Hydrogen Peroxide-Mediated Oxidative Stress vol.28, pp.1, 2016, https://doi.org/10.4014/jmb.1707.07024
  21. Dual function of peroxiredoxin I in lipopolysaccharide-induced osteoblast apoptosis via reactive oxygen species and the apoptosis signal-regulating kinase 1 signaling pathway vol.4, pp.None, 2018, https://doi.org/10.1038/s41420-018-0050-9
  22. Quantitative Proteomics Reveal Peroxiredoxin Perturbation Upon Persistent Lymphocytic Choriomeningitis Virus Infection in Human Cells vol.10, pp.None, 2016, https://doi.org/10.3389/fmicb.2019.02438
  23. Involvement of peroxiredoxin 2 in cumulus expansion and oocyte maturation in mice vol.32, pp.8, 2020, https://doi.org/10.1071/rd19310
  24. Neuroprotective Activity of Mentha Species on Hydrogen Peroxide-Induced Apoptosis in SH-SY5Y Cells vol.12, pp.5, 2016, https://doi.org/10.3390/nu12051366
  25. Potential Role of Phenolic Extracts of Mentha in Managing Oxidative Stress and Alzheimer’s Disease vol.9, pp.7, 2016, https://doi.org/10.3390/antiox9070631
  26. Association of Prx4, Total Oxidant Status, and Inflammatory Factors with Insulin Resistance in Polycystic Ovary Syndrome vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/9949753
  27. Antioxidative Effects of Chrysoeriol via Activation of the Nrf2 Signaling Pathway and Modulation of Mitochondrial Function vol.26, pp.2, 2021, https://doi.org/10.3390/molecules26020313
  28. Current Perspective on the Natural Compounds and Drug Delivery Techniques in Glioblastoma Multiforme vol.13, pp.11, 2016, https://doi.org/10.3390/cancers13112765
  29. Therapeutic targeting of the hypoxic tumour microenvironment vol.18, pp.12, 2021, https://doi.org/10.1038/s41571-021-00539-4
  30. Effect of 2-Cys Peroxiredoxins Inhibition on Redox Modifications of Bull Sperm Proteins vol.22, pp.23, 2016, https://doi.org/10.3390/ijms222312888