• Title/Summary/Keyword: Cellular activation

Search Result 1,033, Processing Time 0.034 seconds

ADP-Ribosylation: Activation, Recognition, and Removal

  • Li, Nan;Chen, Junjie
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • ADP-ribosylation is a type of posttranslational modification catalyzed by members of the poly(ADP-ribose) (PAR) polymerase superfamily. ADP-ribosylation is initiated by PARPs, recognized by PAR binding proteins, and removed by PARG and other ADP-ribose hydrolases. These three groups of proteins work together to regulate the cellular and molecular response of PAR signaling, which is critical for a wide range of cellular and physiological functions.

EXISTENCE AND EXPONENTIAL STABILITY OF ALMOST PERIODIC SOLUTIONS FOR CELLULAR NEURAL NETWORKS WITHOUT GLOBAL LIPSCHITZ CONDITIONS

  • Liu, Bingwan
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.873-887
    • /
    • 2007
  • In this paper cellular neutral networks with time-varying delays and continuously distributed delays are considered. Without assuming the global Lipschitz conditions of activation functions, some sufficient conditions for the existence and exponential stability of the almost periodic solutions are established by using the fixed point theorem and differential inequality techniques. The results of this paper are new and complement previously known results.

Celecoxib-mediated activation of endoplasmic reticulum stress induces de novo ceramide biosynthesis and apoptosis in hepatoma HepG2 cells

  • Maeng, Hyo Jin;Song, Jae-Hwi;Kim, Goon-Tae;Song, Yoo-Jeong;Lee, Kangpa;Kim, Jae-Young;Park, Tae-Sik
    • BMB Reports
    • /
    • v.50 no.3
    • /
    • pp.144-149
    • /
    • 2017
  • Ceramides are the major sphingolipid metabolites involved in cell survival and apoptosis. When HepG2 hepatoma cells were treated with celecoxib, the expression of the genes in de novo sphingolipid biosynthesis and sphingomyelinase pathway was upregulated and cellular ceramide was elevated. In addition, celecoxib induced endoplasmic reticulum (ER) stress in a time-dependent manner. SPTLC2, a subunit of serine palmitoyltransferase, was overexpressed by adenovirus. Adenoviral overexpression of SPTLC2 (AdSPTLC2) decreased cell viability of HEK293 and HepG2 cells. In addition, AdSPTLC2 induced apoptosis via the caspase-dependent apoptotic pathway and elevated cellular ceramide, sphingoid bases, and dihydroceramide. However, overexpression of SPTLC2 did not induce ER stress. Collectively, celecoxib activates de novo sphingolipid biosynthesis and the combined effects of elevated ceramide and transcriptional activation of ER stress induce apoptosis. However, activation of de novo sphingolipid biosynthesis does not activate ER stress in hepatoma cells and is distinct from the celecoxib-mediated activation of ER stress.

Cyclic Mechanical Stretch Stimulates the Proliferation of C2C12 Myoblasts and Inhibits Their Differentiation via Prolonged Activation of p38 MAPK

  • Kook, Sung-Ho;Lee, Hyun-Jeong;Chung, Wan-Tae;Hwang, In-Ho;Lee, Seung-Ah;Kim, Beom-Soo;Lee, Jeong-Chae
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.479-486
    • /
    • 2008
  • Mitogen-activated protein kinases (MAPKs) play an indispensable role in activation of the myogenic program, which is responsive to mechanical stimulation. Although there is accumulating evidence of mechanical force-mediated cellular responses, the role of MAPK in regulating the myogenic process in myoblasts exposed to cyclic stretch is unclear. Cyclic stretch induced the proliferation of C2C12 myoblasts and inhibited their differentiation into myotubes. In particular, it induced persistent phosphorylation of p38 kinase, and decreased the level of phosphorylation of extracellular-signal regulated kinase (ERK). Partial inhibition of p38 phosphorylation increased cellular levels of MyoD and p-ERK in stretched C2C12 cells, along with increased myotube formation. Treatment with $10{\mu}M$ PD98059 prevented myogenin expression in response to a low dose of SB203580 ($3{\mu}M$) in the stretched cells, suggesting that adequate ERK activation is also needed to allow the cells to differentiate into myotubes. These results suggest that cyclic stretch inhibits the myogenic differentiation of C2C12 cells by activating p38-mediated signaling and inhibiting ERK phosphorylation. We conclude that p38 kinase, not ERK, is the upstream signal transducer regulating cellular responses to mechanical stretch in skeletal muscle cells.

Magnolol Inhibits LPS-induced NF-${\kappa}B$/Rel Activation by Blocking p38 Kinase in Murine Macrophages

  • Li, Mei Hong;Kothandan, Gugan;Cho, Seung-Joo;Huong, Pham Thi Thu;Nan, Yong Hai;Lee, Kun-Yeong;Shin, Song-Yub;Yea, Sung-Su;Jeon, Young-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.353-358
    • /
    • 2010
  • This study demonstrates the ability of magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, to inhibit LPS-induced expression of iNOS gene and activation of NF-${\kappa}B$/Rel in RAW 264.7 cells. Immunohisto-chemical staining of iNOS and Western blot analysis showed magnolol to inhibit iNOS gene expression. Reporter gene assay and electrophoretic mobility shift assay showed that magnolol inhibited NF-${\kappa}B$/Rel transcriptional activation and DNA binding, respectively. Since p38 is important in the regulation of iNOS gene expression, we investigated the possibility that magnolol to target p38 for its anti-inflammatory effects. A molecular modeling study proposed a binding position for magnolol that targets the ATP binding site of p38 kinase (3GC7). Direct interaction of magnolol and p38 was further confirmed by pull down assay using magnolol conjugated to Sepharose 4B beads. The specific p38 inhibitor SB203580 abrogated the LPS-induced NF-${\kappa}B$/Rel activation, whereas the selective MEK-1 inhibitor PD98059 did not affect the NF-${\kappa}B$/Rel. Collectively, the results of the series of experiments indicate that magnolol inhibits iNOS gene expression by blocking NF-${\kappa}B$/Rel and p38 kinase signaling.

Effect of Kinetin on In Vitro Development of Parthenogenetic Porcine Oocytes Exposed to Demecolcine Prior to Activation

  • Kim, Ki-Young;Park, Sang-Kyu;Roh, Sang-Ho
    • Journal of Embryo Transfer
    • /
    • v.24 no.2
    • /
    • pp.105-108
    • /
    • 2009
  • This study was designed to investigate the effect of kinetin on in vitro development of parthenogenetic porcine oocytes exposed to demecolcine prior to activation. In vitro matured metaphase II stage oocytes were incubated in 0 or 2 ${\mu}$g/ml demecolcine supplemented defined culture medium for 3 h and the oocytes were activated electrically. The parthenogenetic porcine embryos were then cultured in 0 or 200 ${\mu}$M kinetin supplemented defined culture medium for 7 days. Regardless of demecolcine treatment, kinetin supplementation increased blastocyst rates significantly (7.0% versus 12.1% and 4.9% versus 8.5%; Control versus Kinetin and Demecolcine versus Kinetin + Demecolcine, respectively, p<0.05). Demecolcine treatment before activation tended to decrease blastocyst rates regardless of kinetin supplementation although it is not statistically significant. Total cell numbers in the blastocysts also tended to be elevated in embryos when supplemented with kinetin, however only the result between Kinetin and Demecolcine groups is statistically significant (37.6 ${\times}$ 7.2 versus 28.1 ${\times}$ 9.5, respectively, p<0.05). In conclusion, the present report shows that kinetin enhances developmental competence of parthenogenetic porcine embryo regardless of demecolcine pre-treatment before parthenogenetic activation when they were developed in defined culture condition.

PI3-Kinase and PDK-1 Regulate HDAC1-mediated Transcriptional Repression of Transcription Factor NF-κB

  • Choi, Yong Seok;Jeong, Sunjoo
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.241-246
    • /
    • 2005
  • PDK-1 activates PI3-kinase/Akt signaling and regulates fundamental cellular functions, such as growth and survival. NF-${\kappa}B$ is involved in the induction of a variety of cellular genes affecting immunity, inflammation and the resistance to apoptosis induced by some anti-cancer drugs. Even though the crucial involvement of the PI3-kinase/Akt pathway in the anti-apoptotic activation of NF-${\kappa}B$ is well known, the exact role of PDK-1 as well as PI3-kinase/Akt in NF-vactivation is not understood. Here we demonstrate that PDK-1 plays a pivotal role in transcriptional activation of NF-${\kappa}B$ by dissociating the transcriptional co-repressor HDAC1 from the p65 subunit of NF-${\kappa}B$. The association of CBP with p65 was not directly modulated by PDK-1 or by PI3-kinase. Etoposide activated NF-${\kappa}B$ through PI3-kinase/Akt, and the transcription activation domain (TAD) of p65 was further activated by wild-type PDK-1. Overexpression of a dominant negative PDK-1 mutant decreased etoposide-induced NF-${\kappa}B$ transcription and further down-regulated the ectopic HDAC1-mediated decrease in NF-${\kappa}B$ transcriptional activity. Thus activation of PDK-1 relieves the HDAC1-mediated repression of NF-${\kappa}B$ that may be related to basal as well as activated transcription by NF-${\kappa}B$. This effect may also explain the role of the PI3-kinase/PDK-1 pathway in the anti-apoptotic function of NF-${\kappa}B$ associated with the chemoresistance of cancer cells.

Modulation of Mitochondrial Membrane Potential and ROS Generation by Nicotinamide in a Manner Independent of SIRT1 and Mitophagy

  • Song, Seon Beom;Jang, So-Young;Kang, Hyun Tae;Wei, Bie;Jeoun, Un-woo;Yoon, Gye Soon;Hwang, Eun Seong
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.503-514
    • /
    • 2017
  • Nicotinamide (NAM) plays essential roles in physiology through facilitating $NAD^+$ redox homeostasis. Importantly, at high doses, it protects cells under oxidative stresses, and has shown therapeutic effectiveness in a variety of disease conditions. In our previous studies, NAM lowered reactive oxygen species (ROS) levels and extended cellular life span in primary human cells. In the treated cells, levels of $NAD^+/NADH$ and SIRT1 activity increased, while mitochondrial content decreased through autophagy activation. The remaining mitochondria were marked with low superoxide levels and high membrane potentials (${\Delta}_{{\Psi}m}$); we posited that the treatment of NAM induced an activation of mitophagy that is selective for depolarized mitochondria, which produce high levels of ROS. However, evidence for the selective mitophagy that is mediated by SIRT1 has never been provided. This study sought to explain the mechanisms by which NAM lowers ROS levels and increases ${\Delta}_{{\Psi}m}$. Our results showed that NAM and SIRT1 activation exert quite different effects on mitochondrial physiology. Furthermore, the changes in ROS and ${\Delta}_{{\Psi}m}$ were not found to be mediated through autophagy or SIRT activation. Rather, NAM suppressed superoxide generation via a direct reduction of electron transport, and increased ${\Delta}_{{\Psi}m}$ via suppression of mitochondrial permeability transition pore formation. Our results dissected the effects of cellular $NAD^+$ redox modulation, and emphasized the importance of the $NAD^+/NADH$ ratio in the mitochondria as well as the cytosol in maintaining mitochondrial quality.

MAPK Activation and Cell Viability after $H_2O_2$ Stimulation in Cultured Feline Ileal Smooth Muscle Cells

  • Song, Hyun-Ju;Jeong, Ji-Hoon;Lee, Dong-Kyu;Lee, Tai-Sang;Min, Young-Sil;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.6
    • /
    • pp.339-344
    • /
    • 2004
  • Recent data have shown the importance of oxidative stresses in the pathogenesis of inflammatory bowel disease, crohn's disease and ulcerative colitis. $H_2O_2$, reactive oxygen species (ROS) donor, has been reported to act as a signaling molecule involved in a variety of cellular functions such as apo/ptosis and proliferation. In the present study, we investigated viability of cultured ileal smooth muscle cells (ISMC) after stimulation with $H_2O_2$. Trypan blue method revealed that the cell viability of ISMC treated with 1 mM $H_2O_2$ was not different from that of controls at up to 2 h time point, while treatment of ISMC with 1 mM $H_2O_2$ for 48 h finally induced significant decrease in the cell viability. Therefore, we evaluated whether $H_2O_2$ was capable of ERKs activation in ISMC for the short-term exposure and examined whether tyrosine kinase was involved in the process of ERK activation by $H_2O_2$ in ISMC. We also investigated the effects of $H_2O_2$ on activation of SAPK/JNK and p38 MAP kinase in ISMC. Thus, ISMC were cultured and exposed to $H_2O_2$, and western blot analysis was performed with phosphospecific MAP kinase antibodies. Robust activation of ERK occurred within 30 min of 1 mM $H_2O_2$ treatment. $H_2O_2-induced$ ERK activation was attenuated by a tyrosine kinase inhibitor, genistein, indicating that tyrosine kinase was probably involved in the ERK activation by $H_2O_2$. $H_2O_2$ was a moderate activator of SAPK/JNK, while p38 MAP kinase was not activated by $H_2O_2$. We suggest that ERK activation induced by short-term $H_2O_2$ treatment plays a critical role in cellular protection in the early stage of response to oxidative stress. The present study suggests the necessity of identification of MAPK signaling pathways affected by ROS, since it could ultimately elucidate cellular consequences involved in initiation and perpetuation of intestinal tissue damage in the diseases such as crohn's disease and ulcerative colitis, resulted from excessive ROS.