• Title/Summary/Keyword: Cell-migration

Search Result 1,183, Processing Time 0.023 seconds

Ion Migration in Organic Metal Halide Perovskites (유기 금속 할라이드 페로브스카이트에서 이온 이동)

  • Oh, Ilwhan
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.2
    • /
    • pp.21-27
    • /
    • 2018
  • In this review, recent researches on ion transport phenomena in organic metal halide perovskite materials, which have been popular all over the world, are summarized. Although different results have been reported depending on the perovskite material composition and applied voltage, iodide seems to migrate under actual solar cell operating conditions, and occasionally methylammonium migration is observed. Perovskite is a so-called mixed conductor in which electrons and ions move simultaneously at room temperature, which greatly influences the hysteresis of the perovskite solar cell current-voltage curve and the performance degradation due to long-term operation.

In vivo Dendritic Cell Migration Tracking Using Near-infrared (NIR) Imaging (Near-infrared (NIR) 영상기법을 이용한 생체 내 수지상세포의 이동)

  • Lee, Jun-Ho;Jung, Nam-Chul;Lee, Eun Gae;Lim, Dae-Seog
    • KSBB Journal
    • /
    • v.27 no.5
    • /
    • pp.295-300
    • /
    • 2012
  • Matured dendritic cells (DCs) begin migration with their release from the bone marrow (BM) into the blood and subsequent traffic into peripheral lymphoid and non-lymphoid tissues. Throughout this long movement, migrating DCs must apply specialized skills to reach their target destination. Non-invasive in vivo cell-tracking techniques are necessary to advance immune cell-based therapies. In this study, we used a DiD cell-tracking solution for in vivo dendritic cell tracking in naive mice. We tracked DiD (non-invasive fluorescence dye)-labeled mature dendritic cells using the Near Infrared (NIR) imaging system in normal mice. We examined the immunophenotype of DiD-labeled cells compared with non-labelled mature DCs, and obtained time-serial images of NIR-DC trafficking after mouse footpad injection. In conclusion, we confirmed that DiD-labeled DCs migrated into the popliteal lymph node 24 h after the footpad injection. Here, these data suggested that the cell tracking system with the stable fluorescence dye DiD was useful as a cell tracking tool to advance dendritic cell-based immunotherapy.

The Present Status of Cell Tracking Methods in Animal Models Using Magnetic Resonance Imaging Technology

  • Kim, Daehong;Hong, Kwan Soo;Song, Jihwan
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.132-137
    • /
    • 2007
  • With the advance of stem cell transplantation research, in vivo cell tracking techniques have become increasingly important in recent years. Magnetic resonance imaging (MRI) may provide a unique tool for non-invasive tracking of transplanted cells. Since the initial findings on the stem cell migration by MRI several years ago, there have been numerous studies using various animal models, notably in heart or brain disease models. In order to develop more reliable and clinically applicable methodologies, multiple aspects should be taken into consideration. In this review, we will summarize the current status and future perspectives of in vivo cell tracking technologies using MRI. In particular, use of different MR contrast agents and their detection methods using MRI will be described in much detail. In addition, various cell labeling methods to increase the sensitivity of signals will be extensively discussed. We will also review several key experiments, in which MRI techniques were utilized to detect the presence and/or migration of transplanted stem cells in various animal models. Finally, we will discuss the current problems and future directions of cell tracking methods using MRI.

Gilgyung-tang Inhibits the Migration and Invasion of Human Bladder Cancer 5637 Cells through the Tightening of Tight Junctions and Inhibition of Matrix Metalloproteinase Activity (길경탕의 치밀결합 강화 및 MMPs의 활성 억제를 통한 인체방광암세포의 이동성 및 침윤성의 억제)

  • Hong, Su-hyun;Choi, Yung-hyun
    • The Journal of Internal Korean Medicine
    • /
    • v.37 no.1
    • /
    • pp.16-25
    • /
    • 2016
  • Objectives: Gilgyung-tang (GGT) has been used as one of the main multi-herb formulas to treat “Peo-ong” (lung abscess). In this study, we investigated the inhibitory effects of water extracts of GGT on cell migration and invasion, two critical cellular processes that are often deregulated during metastasis, in human bladder cancer 5637 cells.Methods: Effects on cell viability were quantified using an MTT assay. To analyze the anti-metastatic effects, we conducted a wound healing migration assay, an in vitro invasiveness assay, and a measurement of the transepithelial electrical resistance (TER). The expression of protein and mRNA were measured by Western blotting and real-time polymerase chain reaction (RT-PCR), respectively.Results: GGT markedly inhibited the cell motility and invasiveness of 5637 cells within the concentration range that was not cytotoxic. The inhibitory effects of GGT on cell invasiveness were associated with tightening of the tight junctions (TJs), which was demonstrated by an increase in the TER. The RT-PCR and Western blotting results indicated that GGT decreased the levels of claudin proteins. GGT also inhibited the activity and expression of matrix metalloproteinase (MMP)-2 and -9 and simultaneously increased the levels of tissue inhibitor of metalloproteinase-1 and -2.Conclusions: Our findings suggest that GGT reduces both the migration and the invasion of 5637 cells by modulating the activity of TJs and MMPs.

MicroRNA-122 Promotes Proliferation, Invasion and Migration of Renal Cell Carcinoma Cells Through the PI3K/Akt Signaling Pathway

  • Lian, Ji-Hu;Wang, Wei-Hua;Wang, Jia-Qiang;Zhang, Yu-Hong;Li, Yi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5017-5021
    • /
    • 2013
  • Objective: MicroRNAs (miRNAs) are a small class of non-coding, single-stranded RNAs with a critical role in genesis and maintenance of renal cancer mainly through binding to 3'-untranslated regions (3'UTR) of target mRNAs, which causes a block of translation and/or mRNA degradation. The aim of the present study was to investigate the potential effects of miR-122 in human renal cell carcinomas. Methods: The expression level of miR-122 was quantified by qRT-PCR. MTT, colony formation, invasion and migration assays were used to explore the potential functions of miR-122 in human renal cell carcinoma cells. Results: Cellular growth, invasion and migration in two A498 and 786-O cells were significantly increased after miR-122 transfection. Further experiments demonstrated that overexpression of miR-122 resulted in the increase of phospho-Akt (Ser473) and phospho-mTOR (Ser2448), then activation of mTOR targets, p70S6K and 4E-BP1. Conclusions: The up-regulation of miR-122 may play an important role in the progress of renal cancer through activating PI3K/Akt signal pathway and could be a potential molecular target for anti-cancer therapeutics.

Activating transcription factor 4 aggravates angiotensin II-induced cell dysfunction in human vascular aortic smooth muscle cells via transcriptionally activating fibroblast growth factor 21

  • Tao, Ke;Li, Ming;Gu, Xuefeng;Wang, Ming;Qian, Tianwei;Hu, Lijun;Li, Jiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.347-355
    • /
    • 2022
  • Abdominal aortic aneurysm (AAA) is a life-threatening disorder worldwide. Fibroblast growth factor 21 (FGF21) was shown to display a high level in the plasma of patients with AAA; however, its detailed functions underlying AAA pathogenesis are unclear. An in vitro AAA model was established in human aortic vascular smooth muscle cells (HASMCs) by angiotensin II (Ang-II) stimulation. Cell counting kit-8, wound healing, and Transwell assays were utilized for measuring cell proliferation and migration. RT-qPCR was used for detecting mRNA expression of FGF21 and activating transcription factor 4 (ATF4). Western blotting was utilized for assessing protein levels of FGF21, ATF4, and markers for the contractile phenotype of HASMCs. ChIP and luciferase reporter assays were implemented for identifying the binding relation between AFT4 and FGF21 promoters. FGF21 and ATF4 were both upregulated in Ang-II-treated HASMCs. Knocking down FGF21 attenuated Ang-II-induced proliferation, migration, and phenotype switch of HASMCs. ATF4 activated FGF21 transcription by binding to its promoter. FGF21 overexpression reversed AFT4 silencing-mediated inhibition of cell proliferation, migration, and phenotype switch. ATF4 transcriptionally upregulates FGF21 to promote the proliferation, migration, and phenotype switch of Ang-II-treated HASMCs.

Exosomes from Tension Force-Applied Periodontal Ligament Cells Promote Mesenchymal Stem Cell Recruitment by Altering microRNA Profiles

  • Maolin Chang;Qianrou Chen;Beike Wang;Zhen Zhang;Guangli Han
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.202-214
    • /
    • 2023
  • Background and Objectives: To investigate the role of exosomes from periodontal ligament cells (PDLCs) in bone marrow mesenchymal stem cell (BMSC) migration. Methods and Results: Human PDLCs were applied cyclic tension stretching. Exosomes were extracted from cultured PDLCs by ultracentrifugation, then characterized for their size, morphology and protein markers by NTA, TEM and western blotting. The process that PKH26-labeled exosomes taken up by BMSCs was assessed by confocal microscope. BMSC migration was examined by Transwell assay. Exosomes derived from PDLCs were identified. Cyclic tension stretch application on PDLCs can enhance the migration ability of BMSCs through exosomes. The exosomal miRNA expression profiles of unstretched and stretched PDLCs were tested by miRNA microarray. Four miRNAs (miR-4633-5p, miR-30c-5p, miR-371a-3p and let-7b-3p) were upregulated and six (miR-4689, miR-8485, miR-4655-3p, miR-4672, miR-3180-5p and miR-4476) were downregulated in the exosomes after stretching. Sixteen hub proteins were found in the miRNA-mRNA network. Gene Ontology and KEGG pathway analyses demonstrated that the target genes of differentially expressed exosomal miRNAs closely related to the PI3K pathway and vesicle transmission. Conclusions: The exosomes derived from cyclic tension-stretched PDLCs can promote the migration of BMSCs. Alternation of microRNA profiles provides a basis for further research on the regulatory function of the exosomal miRNAs of PDLCs during orthodontic tooth movement.

Water Extracts of Aralia elata Root Bark Enhances Migration and Matrix Metalloproteinases Secretion in Porcine Coronary Artery Endothelial Cells

  • Oh, In-Suk;Han, Ji-Won;Kim, Hwan-Gyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.372-377
    • /
    • 2005
  • Aralia elata is an edible mountain vegetable. Angiogenesis, the formation of new blood vessels, is a process involving migration, proliferation and cell differentiation, as well as the formation of new capillary structures. Matrix metalloproteinases (MMPs) plays an important role in angiogenesis. The development of a functional vascular system requires a variety of growth factors, their receptors, and intracellular signals. This study examines the effects of water extracts from: (i) A. elata root bark (Aralia extracts); (ii) a combination of Aralia extracts and fibroblast growth factors (FGF-2) on cultured porcine coronary artery endothelial cells (PCAECs). Aralia extracts induced the migration of PCAECs, which was inhibited by MMPs inhibitors. Combining Aralia extracts and FGF-2 enhanced the migration and the secretion of MMP-2 and MMP­9 from PCAECs. We postulated that the Aralia extracts, which induced migrating activity in PCAECs, may be accomplished by increased secretion levels of MMP-2 and MMP-9.

Inhibitory Effect of Uncaria Sinensis on Matrix Metalloproteinase-9 Activity and Human Aortic smooth Muscle Cell migration

  • Kwak, Chang-Geun;Choi, Dall-Yeong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1629-1635
    • /
    • 2006
  • The migration of vascular smooth muscle cells (VSMC) and the production of matrix metallopreteinases-9 (MMP-9) may play a key role in the development of atherosclerosis. In this study, we have more extensively investigated the inhibitory effect of UR on MMP-9 activity and TNF-${\alpha}$ induced human aortic smooth muscle cells (HASMC) migration. The result from gelatin zymography showed that UR inhibited MMP-9 activity in a dose-dependent manner (IC50 = 55 g/ml). In addition, UR strongly inhibited the migration of HASMC induced by TNF-treatment (IC50 = 125 g/ml), although it has very low cytotoxic effect on HASMC (IC50 > 500 g/ml). These results suggest that UR is a potential anti-atherosclerotic agent through inhibition of MMP-9 activity and VSMC migration.

Study on the Activation Energy of Charge Migration for 3D NAND Flash Memory Application (3차원 플래시 메모리의 전하 손실 원인 규명을 위한 Activation Energy 분석)

  • Yang, Hee Hun;Sung, Jae Young;Lee, Hwee Yeon;Jeong, Jun Kyo;Lee, Ga won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.82-86
    • /
    • 2019
  • The reliability of 3D NAND flash memory cell is affected by the charge migration which can be divided into the vertical migration and the lateral migration. To clarify the difference of two migrations, the activation energy of the charge loss is extracted and compared in a conventional square device pattern and a new test pattern where the perimeter of the gate is exaggerated but the area is same. The charge loss is larger in the suggested test pattern and the activation energy is extracted to be 0.058 eV while the activation energy is 0.28 eV in the square pattern.