Browse > Article

Water Extracts of Aralia elata Root Bark Enhances Migration and Matrix Metalloproteinases Secretion in Porcine Coronary Artery Endothelial Cells  

Oh, In-Suk (Institute of Basic Sciences, Chonbuk National University)
Han, Ji-Won (Division of Biological Sciences, Research Center of Bioactive Materials, Chonbuk National University)
Kim, Hwan-Gyu (Division of Biological Sciences, Research Center of Bioactive Materials, Chonbuk National University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.10, no.4, 2005 , pp. 372-377 More about this Journal
Abstract
Aralia elata is an edible mountain vegetable. Angiogenesis, the formation of new blood vessels, is a process involving migration, proliferation and cell differentiation, as well as the formation of new capillary structures. Matrix metalloproteinases (MMPs) plays an important role in angiogenesis. The development of a functional vascular system requires a variety of growth factors, their receptors, and intracellular signals. This study examines the effects of water extracts from: (i) A. elata root bark (Aralia extracts); (ii) a combination of Aralia extracts and fibroblast growth factors (FGF-2) on cultured porcine coronary artery endothelial cells (PCAECs). Aralia extracts induced the migration of PCAECs, which was inhibited by MMPs inhibitors. Combining Aralia extracts and FGF-2 enhanced the migration and the secretion of MMP-2 and MMP­9 from PCAECs. We postulated that the Aralia extracts, which induced migrating activity in PCAECs, may be accomplished by increased secretion levels of MMP-2 and MMP-9.
Keywords
Aralia elata; migration; FGF-2; MMPs;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Chung, C. K. and M. E. Jung (2003) Ethanol fraction of Aralia elata Seemann enhances antioxidant activity and lowers serum lipids in rats when administered with benzo(a)pyrene. Biol. Pharm. Bull. 26: 1502-1504   DOI   ScienceOn
2 Lee, E. B., O. J. Kim, S. S. Kang, and C. Jeong (2005) Araloside A, an antiulcer constituent from the root bark of Aralia elata. Biol. Pharm. Bull. 28: 523-526   DOI   ScienceOn
3 Song, S. J., N. Nakamura, C. M. Ma, M. Hatttori, and S. X. Xu (2001) Five saponins from the root bark of Aralia elata. Phytochemistry 56: 491-497   DOI   ScienceOn
4 Brooks, P. C., S. Silletti, T. L. von Schalscha, M. Friedlander, and D. A. Cheresh (1998) Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92: 391-400   DOI   ScienceOn
5 Frederick, J. and J. F. Woessner Jr. (1988) The matrix metalloproteinase family. pp. 1-14. In: W. C. Parks and R. P. Mecham (eds.). Matrix Metalloproteinases. Academic Press, London, UK
6 Nagase, H. (1997) Activation mechanisms of matrix metalloproteinases. Biol. Chem. 378: 151-160
7 Ferrara, N. and K. Alitalo (1999) Clinical applications of angiogenic growth factors and their inhibitors. Nat. Med. 5: 1359-1364   DOI   ScienceOn
8 Kleiner, D. E., I. M. K. Margulis, and W. G. Stetler- Stevenson (1998) Proteinase assay/zymography. pp. 5A7.1- 5A7.8. In: A. Doyle, J. B. Griffiths, and D. G. Newell (eds.). Cell and Tissue Culture: Laboratory Procedures. John Wiley and Sons, Sussex, UK
9 Pepper, J. S., R. Montesano, S. J. Mandriota, L. Orci, and J. D. Vassalli (1996) Angiogenesis: A paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein 49: 138-162   DOI
10 Brown, M. D. and O. Hudlicka (2003) Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis 6: 1-14   DOI   ScienceOn
11 Risau, W. (1997) Mechanisms of angiogenesis. Nature 386: 671-674   DOI   PUBMED   ScienceOn
12 Szebenyi, G. and J. F. Fallon (1999) Fibroblast growth factors as multifunctional signaling factors. Int. Rev. Cytol. 185: 45-106   DOI
13 Folkman, J. and Y. Shing (1992) Angiogenesis. J. Biol. Chem. 267: 10931-10934
14 Hiraoka, N., E. Allen, I. J. Apel, M. R. Gyetko, and S. J. Weiss (1998) Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95: 365-377   DOI   ScienceOn
15 Carmeliet, P. (2000) Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6: 389-395   DOI   PUBMED   ScienceOn
16 Stetler-Stevenson, W. G. (1999) Matrix metalloproteinases in angiogenesis: A moving target for therapeutic intervention. J. Clin. Invest. 103: 1237-1241   DOI   ScienceOn
17 Nagase, H. and J. F. Woessner Jr. (1999) Matrix metalloproteinases. J. Biol. Chem. 274: 21491-21494   DOI
18 Haris, S. G. and M. L. Shuler (2003) Growth of endothelial cells on microfabricated silicon nitride membranes for an in vivo model of the blood-brain barrier. Biotechnol. Bioprocess Eng. 8: 246-251   DOI   ScienceOn
19 Rosen, E. M., L. Meromsky, E. Setter, D. W. Vinter, and I. D. Goldberg (1990) Quantitation of cytokine-stimulated migration of endothelium and epithelium by a new assay using microcarrier beads. Exp. Cell Res. 186: 22-31   DOI   ScienceOn
20 Ward, R. V., R. M. Hembry, J. J. Reynolds, and G. Murphy (1991) The purification of tissue inhibitor of metalloproteinases- 2 from its 72 kDa progelatinase complex. Demonstration of the biochemical similarities of tissue inhibitor of metalloproteinases-2 and tissue inhibitor of metalloproteinases- 1. Biochem. J. 278: 179-187   DOI
21 Brooks, P. C., R. A. Clark, and D. A. Cheresh (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264: 569-571   DOI   PUBMED
22 Lee, J. B., J. S. Bae, J. H. Choi, J. H. Ham, Y. K. Min, H. M. Yang, T. Othman, and K. Shimizu (2004) Anticancer efficacies of doxorubicin, verapamil and quercetin on FM3A cells under hyperthermic temperature. Biotechnol. Bioprocess Eng. 9: 261-266   DOI   ScienceOn
23 Kim, I., S. O. Moon, K. N. Koh, H. Kim, C. S. Uhm, H. J. Kwak, N. G. Kim, and G. Y. Koh (1999) Molecular cloning, expression, and characterization of angiopoietinrelated protein induces endothelial cell sprouting. J. Biol. Chem. 274: 26523-26528   DOI
24 DeClerck, Y. A., Y. D. Yean, H. S. Lu, J. Ting, and K. E. Langley (1991) Inhibition of autoproteolytic activation of interstitial procollagenase by recombinant metalloproteinase inhibitor MI/TIMP-2. J. Biol. Chem. 266: 3893-3899
25 Yoshikawa, M., T. Murakami, E. Harada, N. Murakami, J. Yamahara, and H. Matsuda (1996) Bioactive saponins and glycosides. VII. On the hypoglycemic principles from the root cortex of Aralia elata seem: Structure related hypoglycemic activity of oleanolic acid oligoglycoside. Chem. Pharm. Bull. 44: 1923-1927   DOI   ScienceOn
26 Klein, S., F. G. Giancotti, M. Presta, S. M. Albelda, C. A. Buck, and D. B. Rifkin (1993) Basic fibroblast growth factor modulates integrin expression in microvascular endothelial cells. Mol. Biol. Cell 4: 973-982   DOI
27 Lee, Y., H. Kim, H. S. Choi, B. H. Kang, Y. B. Han, and S. J. Kim (2000) Water extract of 1:1 mixture of Phellodendron cortex and Aralia cortex has inhibitory effects on oxidative stress in kidney of diabetic rats. J. Ethnopharmacol. 73: 429-436   DOI   ScienceOn
28 Hernandez, D. E., J. L. Hancke, and G. Wikman (1988) Evaluation of the anti-ulcer and antisecretory activity of extracts of Aralia elata root and Schizandra chinensis fruit in the rat. J. Ethnopharmacol. 23: 109-114   DOI   ScienceOn
29 Basilico, C. and D. Moscatelli (1992) The FGF family of growth factors and angiogenesis. Adv. Cancer Res. 59: 115-165   DOI
30 Mignatti, P. and D. B. Rifkin (1993) Biology and biochemistry of proteinases in tumor invasion. Physiol. Rev. 73: 161-195   DOI
31 Oh, I. S. and H. G. Kim (2004) Vascular endothelial growth factor upregulates follistatin in human umbilical vein endothelial cells. Biotechnol. Bioprocess Eng. 9: 201-206   DOI   ScienceOn
32 Bikfalvi, A., S. Klein, G. Pintucci, and D. B. Rifkin (1997) Biological roles of fibroblast growth factor-2. Endocr. Rev. 18: 26-45   DOI   ScienceOn
33 Choi, D. B., W. S. Cha, S. H. Kang, and B. R. Lee (2004) Effect of Pleurotus ferulae extracts on viability of human lung cancer and cervical cancer cell lines. Biotechnol. Bioprocess Eng. 9: 356-361   DOI   ScienceOn