• 제목/요약/키워드: Cell-cycle

검색결과 2,824건 처리시간 0.142초

The antitumor activities of Acanthopanax senticosus Harms(ASH) in human gastric cancer AGS cell lines (가시오가피 에탄올추출물의 AGS위암세포주에서 세포주기억제효과)

  • Lee, Sun-Dong;Ko, Seong-Gyu;Shin, Heon-Tae;Shin, Yong-Cheol
    • Journal of Society of Preventive Korean Medicine
    • /
    • 제15권3호
    • /
    • pp.127-140
    • /
    • 2011
  • Objectives : The research was conducted to confirm the effect of Acanthopanax senticosus harms(ASH) on the anti-tumor activities in AGS human gastric cancer cells. Methods : To examine the potential anti-tumor effect of ASH, we performed many experiments. After processing AGS cancer cells with varying concentrations 80% ethanol ASH extract, analyses by MTT, flow cytometer(FACS) and western blot were used. Results : AGS cancer cells showed decreased cell proliferation and increased contents of S phase when treated with ASH. Moreover, the Western blot experiment showed that ASH affected S phase cell cycle-related molecules(Cyclin A, p21 and p16) in AGS cells. ASH also inhibited EGFR-STAT3 pathway in AGS human gastric cancer cells. Conclusion : Based on these results, we observed that ASH arrested the cell cycle at S phase and inhibited the phosphorylation of EGFR and STAT3 proteins which reduce the cell cycle and the manifestation of the genes that are related to inhibiting cell growth in AGS cells. It can be concluded that ASH can be used in developing medicine for gastric cancer.

신항암제 개발을 위한 Cell Cycle 특이적 Inhibitor 검색 방법의 개발

  • 이승기
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 한국응용약물학회 1993년도 제2회 신약개발 연구발표회 초록집
    • /
    • pp.56-56
    • /
    • 1993
  • 새로운 cell cycle 특이적 억제제의 스크리닝 방법의 확립과 이를 이용하여 cell cycle 억제제의 검색 및 세포분열 및 성장을 억제하는 작용의 분석과 이들의 항암작용 및 세포성장 및 분열 억제 작용의 signal transduction mechanism을 규명한다. 이상의 연구를 수행하기 위해 흰쥐 재생간 조직 및 흰쥐 일차 배양 간세포를 연구 모델로 하여 스크리닝 방법을 확립하고, 세포 분열 및 성장 억제제의 연구 대상 약물로는 기존의 천연물 및 미생물의 2차 대사 산물을 분리 정제한 물질등을 사용하여 그 작용 효능을 연구한다. 1) 흰쥐 부분 간 절제 수술 26시간 후 핵 단백질을 분리 2) MPF activity 측정 3) MPF 활성 저해제 생산 균주의 1차 탐색

  • PDF

Optimizing hormonal and amino acid combinations for enhanced cell proliferation and cell cycle progression in bovine mammary epithelial cells

  • Hyuk Cheol Kwon;Hyun Su Jung;Do Hyun Kim;Jong Hyeon Han;Seo Gu Han;Dong Hyun Keum;Seong Joon Hong;Sung Gu Han
    • Animal Bioscience
    • /
    • 제36권11호
    • /
    • pp.1757-1768
    • /
    • 2023
  • Objective: The number of bovine mammary epithelial cells (BMECs) is closely associated with the quantity of milk production in dairy cows; however, the optimal levels and the combined effects of hormones and essential amino acids (EAAs) on cell proliferation are not completely understood. Thus, the purpose of this study was to determine the optimal combination of individual hormones and EAAs for cell proliferation and related signaling pathways in BMECs. Methods: Immortalized BMECs (MAC-T) were treated with six hormones (insulin, cortisol, progesterone, estrone, 17β-estradiol, and epidermal growth factor) and ten EAAs (arginine, histidine, leucine, isoleucine, threonine, tryptophan, lysine, methionine, phenylalanine, and valine) for 24 h. Results: Cells were cultured in a medium containing 10% fetal bovine serum (FBS) as FBS supplemented at a concentration of 10% to 50% showed a comparable increase in cell proliferation rate. The optimized combination of four hormones (insulin, cortisol, progesterone, and 17β-estradiol) and 20% of a mixture of ten EAAs led to the highest cell proliferation rate, which led to a significant increase in cell cycle progression at the S and G2/M phases, in the protein levels of proliferating cell nuclear antigen and cyclin B1, cell nucleus staining, and in cell numbers. Conclusion: The optimal combination of hormones and EAAs increased BMEC proliferation by enhancing cell cycle progression in the S and G/2M phases. Our findings indicate that optimizing hormone and amino acid levels has the potential to enhance milk production, both in cell culture settings by promoting increased cell numbers, and in dairy cows by regulating feed intake.

Apoptosis Induction in MV4-11 and K562 Human Leukemic Cells by Pereskia sacharosa (Cactaceae) Leaf Crude Extract

  • Asmaa, Mat Jusoh Siti;Al-Jamal, Hamid Ali Nagi;Ang, Cheng Yong;Asan, Jamaruddin Mat;Seeni, Azman;Johan, Muhammad Farid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.475-481
    • /
    • 2014
  • Background: Pereskia sacharosa is a genus of cacti widely used in folk medicine for cancer-related treatment. Anti-proliferative effects have been studied in recent years against colon, breast, cervical and lung cancer cell lines, with promising results. We here extended study of anti-proliferative effects to a blood malignancy, leukemia. Materials and Methods: Two leukemic cell lines, MV4-11 (acute myeloid leukemia) and K562 (chronic myeloid leukemia), were studied. $IC_{50}$ concentrations were determined and apoptosis and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell-cycle related regulatory proteins was assessed by Western blotting. Results: P sacharosa inhibited growth of MV4-11 and K562 cells in a dose-dependent manner. The mode of cell death was via induction of intrinsic apoptotic pathways and cell cycle arrest. There was profound up-regulation of cytochrome c, caspases, p21 and p53 expression and repression of Akt and Bcl-2 expression in treated cells. Conclusions: These results suggest that P sacharosa induces leukemic cell death via apoptosis induction and changes in cell cycle checkpoint, thus deserves further study for anti-leukemic potential.

Anticancer Effects of Curcuma C20-Dialdehyde against Colon and Cervical Cancer Cell Lines

  • Chaithongyot, Supattra;Asgar, Ali;Senawong, Gulsiri;Yowapuy, Anongnat;Lattmann, Eric;Sattayasai, Nison;Senawong, Thanaset
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6513-6519
    • /
    • 2015
  • Background: Recent attention on chemotherapeutic intervention against cancer has been focused on discovering and developing phytochemicals as anticancer agents with improved efficacy, low drug resistance and toxicity, low cost and limited adverse side effects. In this study, we investigated the effects of Curcuma C20-dialdehyde on growth, apoptosis and cell cycle arrest in colon and cervical cancer cell lines. Materials and Methods: Antiproliferative, apoptosis induction, and cell cycle arrest activities of Curcuma C20-dialdehyde were determined by WST cell proliferation assay, flow cytometric Alexa fluor 488-annexin V/propidium iodide (PI) staining and PI staining, respectively. Results: Curcuma C20 dialdehyde suppressed the proliferation of HCT116, HT29 and HeLa cells, with IC50 values of $65.4{\pm}1.74{\mu}g/ml$, $58.4{\pm}5.20{\mu}g/ml$ and $72.0{\pm}0.03{\mu}g/ml$, respectively, with 72 h exposure. Flow cytometric analysis revealed that percentages of early apoptotic cells increased in a dose-dependent manner upon exposure to Curcuma C20-dialdehyde. Furthermore, exposure to lower concentrations of this compound significantly induced cell cycle arrest at G1 phase for both HCT116 and HT29 cells, while higher concentrations increased sub-G1 populations. However, the concentrations used in this study could not induce cell cycle arrest but rather induced apoptotic cell death in HeLa cells. Conclusions: Our findings suggest that the phytochemical Curcuma C20-dialdehyde may be a potential antineoplastic agent for colon and cervical cancer chemotherapy and/or chemoprevention. Further studies are needed to characterize the drug target or mode of action of the Curcuma C20-dialdehyde as an anticancer agent.

Synthesis and Biological Activity of Fungal Metabolite, 4-Hydroxy-3-(3'-Methyl-2'-Butenyl)-Benzoic Acid

  • Kim, Hye-Jin;Kwon, Ho-Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.543-545
    • /
    • 2007
  • 4-Hydroxy-3-(3'-methyl-2'-butenyl)-benzoic acid (HMBA) was previously isolated from Curvularia sp. KF119 as a cell-cycle inhibitor. However, the present study used a novel and practical synthetic method to prepare a large quantity of HMBA. The synthetic HMBA was found to inhibit the cell-cycle progression of HeLa cells with a comparable potency to the natural fungal metabolite. The inhibition of the cell-cycle progression by the synthetic HMBA involved both the activation of $p21^{WAF1}$ and the inhibition of cyclin D1 expression in the cells. Consequently, this new synthetic procedure provides an easy and convenient way to produce or manipulate the original fungal metabolite.

RPA-governed Endonuclease Switching during Eukaryotic Okazaki Fragment Processing.

  • Bae, Sung-Ho;Bae, Kwang-Hee;Kim, Jung-Ae;Seo, Yeon-Soo
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.22-22
    • /
    • 2001
  • At the eukaryotic replication fork, discontinuous synthesis of lagging strand DNA gives rise to Okazaki fragments carrying ribonucleotides derived from the primer RNA at their 5' ends. Efficient removal of these ribonucleotides is vital for maintaining genome integrity. In this report we show that the endonucleases Dna2 and Fen1 act sequentially to facilitate the complete removal of the primer RNA.(omitted)

  • PDF

요소회로 효소 유전자로 형질전환 된 Chinese Hamster Ovary 세포의 암모니아 제거능력과 세포성장률

  • Kim, Hong-Jin;Jeong, Myeong-Il;Jang, Yun-Jeong;Im, Mi-Hui;Kim, Ik-Hwan;Kim, Ik-Yeong
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.66-69
    • /
    • 2001
  • Previously we developed a CHO cell line (CHO-OTC1-A19) expressing the first two enzymes of urea cycle. This cell line showed higher ammonia removal activity and faster growth rate than the vector controlled CHO cells (CHO-neo-5). The purpose of this study was to develop a cell line with higher ammonia removal activity than the cell line developed previously. To accomplish this, we constructed stable CHO cell lines expressing the first three, the first four, or all five enzymes of urea cycle by the stable transfection method. We finally selected CHO-AL-19 cell line expressing the first three, the first four enzymes of the cycle with higher ammonia activity than CHO-OTC1-A19 and CHO-n대-5 cell lines: 40% and 15% higher than those of CHO-neo-5 and CHO-OTC1-A19 cell lines 72 hour after culture started, respectively. It also showed 44% and 10% higher cell viability than CHO-neo-5 and CHO- OTC1-A19 cell lines at higher cell density. In addition, CHO-AL-19 cells showed 45%-60% and about 20% lower ammonia concentration per cell than those of CHO-neo-% and CHO-OTC1-A19 cell lines, respectively. These results indicate that CHO-AL-19 could be used in the production of human therapeutic proteins with higher efficiency.

  • PDF

The Red-ginseng Extract Alters the Cell Cycle and Viability in the Human Neuronal Stem Cells (홍삼추출액의 인간성체신경줄기세포 증식과 세포사 관련 세포주기의 변화에 대한 효과)

  • Kim, Hyun-Jung;Kang, La-Mi;Ahn, Jin-Young;Han, Jung-Soon;Kim, Seung-U.;Lee, Kwang-Woo;Kim, Man-Ho
    • Journal of Ginseng Research
    • /
    • 제28권1호
    • /
    • pp.39-44
    • /
    • 2004
  • The present study is to determine whether the Red-ginseng extract has a proliferative or cytotoxic effect on the human neuronal stem cells(hNSCs). The hNSCs were grown and incubated with different doses of Red-ginseng extract. We tested the proliferative or cytotoxic effects by MTT and FACS analysis. Cell viability cell cycle analysis, DNA fragmentation, and bax or PARP expressions were evaluated. The hNSCs showed a proliferafe trend with its peak concentration at 0.3 $\mu\textrm{g}$/$m\ell$. Beyond this point, higher doses decreased viabilities and showed a cytotoxic effect at 10 $\mu\textrm{g}$/$m\ell$. There was a tendency of increased S and G2/M phases during cell proliferation. In a cytotoxic condition, decreased S phase and increased G0/G1 phases were noted, suggesting cell cycle arrest. The cytotoxic effect was associated with increase DNA fragmentation in a dose-dependent manner, However PARP cleavage or bax expression was not detected. Our results suggest that Red-ginseng extract has dual effects, the cell proliferative or cytotoxic effect, on hNSCs in vitro with dose-dependent manner.

Cell Cycle Arrest of Extract from Artemisia annua Linné. Via Akt-mTOR Signaling Pathway in HCT116 Colon Cancer Cells (HCT116 대장암세포에서 Akt-mTOR 신호경로를 통한 개똥쑥 추출물 (AAE)의 세포주기 억제 효과)

  • Kim, Bo Min;Kim, Guen Tae;Lim, Eun Gyeong;Kim, Eun Ji;Kim, Sang Yong;Ha, Sung Ho;Kim, Young Min
    • KSBB Journal
    • /
    • 제30권5호
    • /
    • pp.223-229
    • /
    • 2015
  • In this study, extract from Artemisia annua in L. (AAE) is known as a medicinal herb that is effective against cancer. The cell cycle is regulated by the activation of cyclin-dependent kinase (CDK)/cyclin complex. We will focus on regulation of CDK2 by cyclin E. cyclin E is associated with CDK2 to regulate progression from G1 into S phase. Akt is known to play an important role in cell proliferation and cell survival. Activation of Akt increases mTOR activity that promotes cell proliferation and cancer growth. In this study, we investigated that AAE-induced cell cycle arrest at G1/S phase in HCT116 colon cancer. Treatment of AAE shows that reduced activation of Akt decreases mTOR/Mdm2 activity and then leads to increase the activation of p53. The active p53 promotes activation of p21. p21 induces inactivation of CDK2/cyclin E complex and occurs cell cycle arrest at G1/S phase. We treated LY294002 (Akt inhibitor) and Rapamycin (mTOR inhibitor) to know the relationship between the signal transduction of proteins associated with cell cycle arrest. These results suggest that AAE induces cell cycle arrest at G1/S phase by Akt/mTOR pathway in HCT116 colon cancer cell.