• 제목/요약/키워드: Cell-Centered Method

검색결과 122건 처리시간 0.029초

호우 형태에 따른 호우중심형 면적감소계수 비교 (Comparative Study of the Storm Centered Areal Reduction Factors by Storm Types)

  • 이동주;현석훈;강부식
    • 대한토목학회논문집
    • /
    • 제35권6호
    • /
    • pp.1219-1228
    • /
    • 2015
  • 면적고정형 ARF (Fixed Area ARFs)방법은 강우관측소의 지점강우를 활용하여 산정되고 있으며, 공간적 관측밀도의 제약이 정확한 ARF산정에 제약조건이 되고 있다. 본 연구에서는 레이더 강우관측을 활용하여 호우중심형의 ARF를 제시하고자 한다. 호우중심형 ARF (Storm-centered ARFs)산정 시 강우의 이동성, 방향성, 공간분포를 고려하기 위하여 강우사상별 강우형상에 따른 타원 장축의 방향성 결정, 강우형상에 따른 면적별 최적면적강우량을 산정하여 ARF를 제시하였다. 전선형에 비하여 태풍의 ARF값의 변동 폭이 작은 것을 알 수 있었고, 전선형은 지속시간에 따라 ARF가 증가하지만, 태풍의 경우에는 오히려 ARF가 감소하는 모습을 볼 수 있었다. 이 결과 지속시간이 비교적 짧은 1~3시간에서는 태풍 산바 사상의 ARF가 크게 산정되었으나, 지속시간이 긴 6~24시간에서는 ARF가 전선형 강우에 비해 작게 산정됨을 확인하였다.

선체주위 난류유동장의 해석에 관한 연구 (A Study on Turbulent Flow Fields around Ships)

  • 이승희;박종진
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.64-70
    • /
    • 1996
  • Three dimensional turbulent flow fields around ships are simulated by a numerical method. Reynolds Averaged Navier-Stokes equations are used where Reynolds stresses are approximated by Baldwin-Lomax and Sub-Grid Scale(SGS) turbulence models. Body-fitted coordinate system is introduced to conform three dimensional ship geometries. The governing equations are discretized by a finite volume method. Temporal derivatives are approximated by the forward differencing and the convection terms are approximated by the QUICK or Kawamura scheme. The 2nd-order centered differencing is used for other spatial derivatives. Pressure and velocity fields are simultaneously iterated by the Highly Simplified Marker-And-Cell method. To verify the numerical method and turbulence models, flow fields around ships are simulated and compared to the experiments.

  • PDF

경계면포착법에 의한 밀도차에 따른 다상유동 수치해석 (Numerical Simulation of Two-Dimensional Multiphase Flows due to Density Difference by Interface Capturing Method)

  • 명현국
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.572-575
    • /
    • 2008
  • Two-dimensional multiphase flows due to density difference such as the Rayleigh-Taylor instability problem and the droplet splash are simulated by an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method in a volume of fluid(VOF) scheme for phase interface capturing. The present results are compared with other numerical solutions found in the literature. It is found that the present code simulates complex free surface flows such as multiphase flows due to density difference efficiently and accurately.

  • PDF

비정렬격자계를 사용하는 3차원 유동해석코드 개발 (II) - 코드성능평가 - (Development of 3-D Flow Analysis Code Using Unstructured Grid System (II) - Code's Performance Evaluation -)

  • 김종태;김종은;명현국
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.1057-1064
    • /
    • 2005
  • A conservative finite-volume numerical method using unstructured meshes, which is developed by the authors, is evaluated for its application to several 2-D benchmark problems using a variety of quadrilateral, triangular and hybrid meshes. The present pressure-based numerical method for unstructured mesh clearly demonstrates the same accuracy and robustness as that fur typical structured mesh.

EXPLICIT BOUNDS FOR THE TWO-LEVEL PRECONDITIONER OF THE P1 DISCONTINUOUS GALERKIN METHOD ON RECTANGULAR MESHES

  • Kim, Kwang-Yeon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권4호
    • /
    • pp.267-280
    • /
    • 2009
  • In this paper we investigate a simple two-level additive Schwarz preconditioner for the P1 symmetric interior penalty Galerkin method of the Poisson equation on rectangular meshes. The construction is based on the decomposition of the global space of piecewise linear polynomials into the sum of local subspaces, each of which corresponds to an element of the underlying mesh, and the global coarse subspace consisting of piecewise constants. This preconditioner is a direct combination of the block Jacobi iteration and the cell-centered finite difference method, and thus very easy to implement. Explicit upper and lower bounds for the maximum and minimum eigenvalues of the preconditioned matrix system are derived and confirmed by some numerical experiments.

  • PDF

적응형 Cartesian 격자기법에서 Point Gauss-Seidel 기법을 사주한 Euler 방정식 계산 (Computation of the Euler Equations on the Adaptive Cartesian Grids Using the Point Gauss-Seidel Method)

  • 이진규;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.93-98
    • /
    • 2001
  • An adaptive Cartesian grid method having the best elements of structured, unstructured, and Cartesian grids is developed to solve the steady two-dimensional Euler equations. The solver is based on a cell-centered finite-volume method with Roe's flux-difference splitting and implicit point Gauss-seidel time integration method. Calculations of several compressible flows are carried out to show the efficiency of the developed computer code. The results were generally in good agreements with existing data in the literature and the developed code has the good ability to capture important feature of the flows.

  • PDF

Newton-GMRES 법을 사용한 혼합격자에서의 압축성 Navier-Stoke 방정식 수치 해석 (Numerical Solutions of Compressible Navier-Stokes Equations on Hybrid Meshes Using Newton-GMRES Method)

  • 최환석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.178-183
    • /
    • 2000
  • An efficient Newton-GMRES algorithm is presented for computing two-dimensional steady compressible viscous flows on unstructured hybrid meshes. The scheme is designed on cell-centered finite volume method which accepts general polygonal meshes. Steady-state solution is obtained with pseudo-transient continuation strategy. The preconditioned, restarted general minimum residual(GMRES) method is employed in matrix-free form to solve the linear system arising at each Newton iteration. The incomplete LU fartorization is employed for the preconditioning of linear system. The Spalart-Allmars one equation turbulence model is fully coupled with the flow equations to simulate turbulence effect. The accuracy, efficiency and robustness of the presently developed method are demonstrated on various test problems including laminar and turbulent flows over flat plate and airfoils.

  • PDF

비정렬격자계에 적합한 경계면포착법에서의 HR 도식 비교연구 (Comparative Study on High Resolution Schemes in Interface Capturing Method Suitable for Unstructured Meshes)

  • 명현국
    • 대한기계학회논문집B
    • /
    • 제32권1호
    • /
    • pp.23-29
    • /
    • 2008
  • Two high resolution compressive schemes, CICSAM(Ubbink, 1997) and HRIC(Muzaferija & Peric, 1999), in interface capturing method are reviewed briefly with respect to the extended forms suitable for unstructured meshes. And then those are applied to three typical test cases of translation test, shearing flow test and collapsing water problem with an obstacle. It is accomplished by implementing the high resolution schemes in the in-house CFD code(PowerCFD) for computing 3-D flow with an unstructured cell-centered method, which is based on the finite-volume technique and fully conservative. The calculated results show that CICSAM is better than HRIC with respect to accuracy and robustness, although either scheme can be used as a good choice for free surface or two-phase flow simulation.

선체주위 난류유동장의 해석에 관한 연구 (A Study on Turbulent Flow Fields around Ships)

  • 박종진;이승희
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.148-153
    • /
    • 1995
  • Three dimensional turbulent flow fields around ships are simulated by a numerical method. Reynolds Averaged Navier-Stokes equations are used where Reynolds stresses are approximated by Baldwin-Lomax and Sub-Grid Scale(SGS) turbulence models. Body-fitted coordinate system is introduced to conform three dimensional ship geometries. The governing equations are discretized by a finite volume method. Temporal derivatives are approximated by the forward differencing and the convection terms are approximated by the QUICK or Kawamura scheme. The 2nd-order centered differencing is used for other spatial derivatives. Pressure and velocity fields are simultaneously iterated by the Highly Simplified Marker-And-Cell method. To verity the numerical method and turbulence models, flow fields around ships are simulated and compared to the experiments.

  • PDF

한의기반 통합암치료로 비소세포폐암 환자의 항암화학요법 후유증 개선 2례 (Korean Medicine-based Integrative Oncology Therapies on adverse effects of Chemotherapy in Non-Small Cell Lung Cancer : 2 Cases)

  • 염지윤;안수빈;박수정;오승윤
    • 대한암한의학회지
    • /
    • 제27권1호
    • /
    • pp.57-66
    • /
    • 2022
  • Objective: To report the improvements with Korean medicine-based integrative cancer therapies on adverse effects of adjuvant chemotherapy in non-small cell lung cancer patients. Method: There were two patients complained cough, rhinorrhea, numbness, general weakness, nausea and dyspepsia after chemotherapy. They got treated centered on Korean medicine including herbal medicine, acupuncture, electro-acupuncture, pharmacopuncture, moxibustion, hand and foot bath. They were also treated Western immunotherapies like Thymosin at regular intervals. The symptoms were measured by the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core 15 for Palliative Care(EORTC QLQ C-15 PAL) and their subjective assessments. Results: Their chief complaints were relieved and their quality of life scores was improved even though they have been receiving chemotherapy continuously. Conclusion: These cases revealed a possibility that Korean medicine-based integrative cancer therapies could improve some symptoms after chemotherapy in non-small cell lung cancer.