• Title/Summary/Keyword: Cell wall protein

Search Result 272, Processing Time 0.025 seconds

Characterization of an Apple Polygalacturonase-Inhibiting Protein (PGIP) That Specifically Inhibits an Endopolygalacturonase (PG) Purified from Apple Fruits Infected with Botryosphaeria dothidea

  • Lee Dong-Hoon;Bae Han-Hong;Kang In-Kyu;Byun Jae-Kyun;Kang Sang-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1192-1200
    • /
    • 2006
  • An apple polygalacturonase-inhibiting protein (PGIP), which specifically inhibits endopolygalacturonase (PG, EC 3.2.1.15) from Botryosphaeria dothidea, was purified from Botryosphaeria dothidea-infected apple (Malus domestica cv. Fuji) fruits. The purified apple PGIP had a molecular mass of 40 kDa. The N-terminal amino acid sequence of the purified protein showed high homologies to those of PGIP from pear (100%), tomato (70%), and bean (65%). We also purified polygalacturonase (PG) from B. dothidea. The PG hydrolyzes pectic components of plant cell walls. When the extracted apple pectic cell wall material was treated with purified apple PGIP and B. dothidea PG, the amount of uronic acid released was lower than that treated with B. dothidea PG alone. This result demonstrates that PGIP functions specifically by inhibiting cell wall maceration of B. dothidea PG Furthermore, we characterized the de novo function of the PGIP against PG on the solubilization and depolymerization of polyuronides from cell wall of apple fruits inoculated with B. dothidea. This result demonstrated that the PGIP of plants exhibits one of the direct defense mechanisms against pathogen attack by inhibiting PGs that are released from pathogens for hydrolysis of cell wall components of plants.

THE EFFECTS OF CELL WALL PROTEINS OF STREPTOCOCCUS SPP. ON DNA SYNTHESIS OF L929 CELLS AND THEIR SDS-PAGE PATTERNS (연쇄 구균의 세포벽 단백질이 L929 세포의 DNA합성에 미치는 영향 및 SDS-PAGE 양상에 관한 연구)

  • Lee, Se-Jong;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.71-95
    • /
    • 1995
  • Bacteria have been regarded as a one of major etiologic factors in root canal infections. In endodontic treatment the effective removal of pathogenic microorganisms in the root canal is the key to successful outcome. Bacterial cell wall components may play an important role in the development of pulpal and periapical disease. The purpose of this study was to evaluate the effect of sonic extracts of Streptococcus spp. on cultured L929 cells and to characterize cell wall protein profiles of Streptococcus spp. Streptococcus spp. were isolated from infected root canals and identified with Vitek Systems(Biomeriux, USA). Five streptococci, namely S. sanguis, S. mitis, S uberis, S. mutans (ATCC 10449) and S. faecalis (ATCC 19433) weere enriched in brain heart infusion broth. Cell pellets were sonicated and cell wall extracts were dialyzed and membrane filtered. Prepared cell wall proteins were applied to cultured L929 cell. The cell reaction were evaluated by monitoring DNA synthesis, cell numbers and the change of cell morphology. The total cell wall protein profiles of microorganisms were characterized by sodium dodecyl sulfate polyacrylamide-gel eledruphoresis(SDS-PAGE). DNA synthesis of L929 cells were reduced by the increasing concentration of sonic extracts. DNA synthesis was significantly suppressed in more than $50{\mu}g$/ml of sonic extract conentration in five streptococci. S. nutans (ATCC 10449) showed stronger suppression on DNA synthesis than remaining four streptococci, which had the similar effect on DNA synthesis. Analysis of DNA synthesis measured by [$^3H$]-thymidine uptake was more sensitvie method than cell counting. Sonic extracts affected the microscopic findings of L929 cells. The protein profiles indicated that all five strains shared two major proteins with molecular masses of 70.8 and 57.5 kD respectively. S. uberis and S. mutans shared common minor proteins of which molecular weights were 147.9 and 112.2 kD respectively. However some minor proteins were unique for S. mitis, S. uberis and S. faecalis.

  • PDF

Biochemical Properties and Localization of the β-Expansin OsEXPB3 in Rice (Oryza sativa L.)

  • Lee, Yi;Choi, Dongsu
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.119-126
    • /
    • 2005
  • ${\alpha}$-Expansins are bound to the cell wall of plants and can be solubilized with an extraction buffer containing 1 M NaCl. Localization of ${\alpha}$-expansins in the cell wall was confirmed by immunogold labeling and electron microscopy. The subcellular localization of vegetative ${\beta}$-expansins has not yet been studied. Using antibodies specific for OsEXPB3, a vegetative ${\beta}$-expansin of rice (Oryza sativa L.), we found that OsEXPB3 is tightly bound to the cell wall and, unlike ${\alpha}$-expansins, cannot be solubilized with extraction buffer containing 1 M NaCl. OsEXPB3 protein could only be extracted with buffer containing SDS. The subcellular localization of the OsEXPB3 protein was confirmed by immunogold labeling and electron microscopy. Gold particles were mainly distributed over the primary cell walls. Immunohistochemistry showed that OsEXPB3 is present in all regions of the coleoptile and root tissues tested.

Characterization of the Cloned Staphylococcal Peptidoglycan Hydrolase Gene Product

  • Lee, Yoon-Ik
    • BMB Reports
    • /
    • v.28 no.5
    • /
    • pp.443-450
    • /
    • 1995
  • Cloned staphylococcal peptidoglycan hydrolase was used in determining the physiological characteristics of peptidoglycan hydrolase. This enzyme hydrolyzed the bacterial cell walls and released the N-terminal alanine, but not the reducing groups. This cloned gene product was localized in the cytoplasm of transformed Escherichia coli. Activity gels indicated the enzyme had an Mr of about 54,000, which was consistent with the deduced Mr from sequencing of the cloned gene. The activity bound to CM-cellulose but not DEAE-cellulose resin, indicating it as a basic protein. Enhanced enzyme activity in a low concentration of cations, and inhibited enzyme activity in a solution with dissolved phospholipids, suggested that the activity and the availability of this basic protein may be regulated between negatively charged and positively charged cellular molecules. The activity against boiled crude cell wall was much greater than against purifed cell wall, suggesting protein associated with crude cell wall may aid in the binding of the peptidoglycan hydrolase The cloned peptidoglycan hydrolase showed positive activity on whole cells of some lysostaphin-resistant coagulase-negative staphylococci. The cloned enzyme may be an alternative for lysostaphin for lysis of staphylococci.

  • PDF

Effect of Mutation in α-COP, A Subunit of the COPI Vesicle, on Cell Wall Biogenesis in Fungi (COPI 소낭 구성체인 α-COP의 돌연변이가 균류 세포벽 합성에 미치는 영향)

  • Lee, Hwan-Hee;Park, Hee-Moon
    • The Korean Journal of Mycology
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • The cell wall is essential for the survival and osmotic integrity of fungal cells. It is the framework to which biologically active proteins such as cell adhesion molecules and hydrolytic enzymes are attached or within which they act. Recently it was shown that mutations in ${\alpha}-COP$, a subunit of COPI vesicle, is responsible for the thermo-sensitive osmo-fragile phenotype of fungi, such as Saccharomyces cerevisiae and Aspergillus nidulans, and suggested that ${\alpha}-COP$ may play a crucial role in translocation of protein(s) of the ${\beta}-1,3-gulcan$ synthase complex and cell wall proteins, thus may contribute to the maintenance of cell wall integrity. In this review, we summarized the relationship between the intra-cellular protein translocation machinery, especially the ${\alpha}-COP$ of COPI vesicle, and cell wall biogenesis in fungi. We also discussed potential use of secretory mutants in basic and applied research of the fungal cell walls.

Plant Cell Wall Degradation with a Powerful Fusarium graminearum Enzymatic Arsenal

  • Phalip, Vincene;Goubet, Florence;Carapito, Raphael;Jeltsch, Jean-Marc
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.573-581
    • /
    • 2009
  • The complex enzyme pool secreted by the phytopathogenic fungus Fusarium graminearum in response to glucose or hop cell wall material as sole carbon sources was analyzed. The biochemical characterization of the enzymes present in the supernatant of fungal cultures in the glucose medium revealed only 5 different glycosyl hydrolase activities; by contrast, when analyzing cultures in the cell wall medium, 17 different activities were detected. This dramatic increase reflects the adaptation of the fungus by the synthesis of enzymes targeting all layers of the cell wall. When the enzymes secreted in the presence of plant cell wall were used to hydrolyze pretreated crude plant material, high levels of monosaccharides were measured with yields approaching 50% of total sugars released by an acid hydrolysis process. This report is the first biochemical characterization of numerous cellulases, hemicellulases, and pectinases secreted by F. graminearum and demonstrates the usefulness of the described protein cocktail for efficient enzymatic degradation of plant cell wall.

Adsorption of $\textrm{Pb}_{2+}$ in the components of bacterial cell membrane

  • Kim, Mal-Nam
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.278-282
    • /
    • 1995
  • S. epidermidis cell was fractionated into cell wall, cell membrane and cytoplasm. The cell membrane adsorbed the most abundant $\textrm{Pb}_{2+}$ per unit dry weight of the three fractions tested. Adsorption behavior of $\textrm{Pb}_{2+}$ in lipid and protein, which are the main components of the cell membrane, indicated that phosphatidylethanolamine and phosphatidylinositol having phosphoryl group and gangliosides containing carboxyl groups adsorbed much more $\textrm{Pb}_{2+}$ than triglycerides lacking any chargeable functional groups. Protein purified from cell membrane adsorbed larger amount of $\textrm{Pb}_{2+}$ than total native cell membrane or cell membrane lipid.

  • PDF

Mechanism of Cadmium Accumulation in the Cell of Cadmium-Tolerant Bacterium, Pseudomonas putida (카드뮴내성균(耐性菌)(Pseudomonas putida)에 의한 균체내(菌體內) 카드뮴 축적(蓄積) 기작(機作))

  • Heo, Jong-Soo;Cho, Ju-Sik;Han, Mun-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.1
    • /
    • pp.67-76
    • /
    • 1992
  • A mechanistic study by which Cadmium-tolerant P.Putida C1 accumulates high conc of Cd in its cell body was performed. Approximately 57% Cd accumulated was distributed on the cell wall and the other 43% portion was in cytoplasm. 84% Cd of the Cd in the cell wall fractions present in the polyphosphate-polysaccharide fractions, but most of Cd in the cytoplasm fraction was in protein and nucleic acid. Cadmium affected the protein synthesis in P. Putida. The intracellular protein content was decreased by cadmium addition, but the soluble protein precipitated by ammonium sulfate($30{\sim}75%$ satruation) was increased as compared to that from the cells grwon without cadmium. Furthermore, in the cells grown with of cadmium, high-molecular-weight soluble protein was increased, with of cadmium, high-molecular-weight soluble protein was increased, compared with the cells grown without cadmium, but low-molecular-weight soluble protein was decreased. These results indicate that Cd inhibited the intracellular protein biosynthesis but enhance biosynthesis of the high-molecular-weight soluble protein precipitate by ammonium sulfate($30{\sim}75%$ saturation).

  • PDF

Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

  • Cho, Won Kyong;Hyun, Tae Kyung;Kumar, Dhinesh;Rim, Yeonggil;Chen, Xiong Yan;Jo, Yeonhwa;Kim, Suwha;Lee, Keun Woo;Park, Zee-Yong;Lucas, William J.;Kim, Jae-Yean
    • Molecules and Cells
    • /
    • v.38 no.8
    • /
    • pp.685-696
    • /
    • 2015
  • Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins.

Comparison of Cell Wall Ultrastructures of Aspergillus nidulans in Presence and Absence of a MnpAp Mannoprotein

  • Jeong, Hyo-Yong;Whang, Sung-Soo;Chae, Keon-Sang
    • Animal cells and systems
    • /
    • v.10 no.3
    • /
    • pp.131-135
    • /
    • 2006
  • The ultrastructure of Aspergillus nidulans cell wall in relation to a mannoprotein was studied by scanning and transmission electron microscopy. An mnpAp null-mutant, DMPV1, was used as a negative control of a wild type VER7. To analyze whether the mannoprotein in the cell wall during the development of an mnpAp null-mutant is present or not, immunogold microscopy was also adopted. The surface sculpturing of various cell types - hyphae, conidium, Hulle cell, and ascospore - were not very different between the wild type and the mnpAp-null mutant (DMPV1) as examined by scanning electron microscopy. These results were comparable to those examined by transmission electron microscopy, in that the hyphal cell wall was not indentical between two strains, probably caused by the MnpA protein (MnpAp). MnpAp was absent in both the hyphal cell wall of the DMPV1 strain and the conidial cell wall of a wide type, but clearly recognized in the hyphal cell wall of a wild type.