Browse > Article
http://dx.doi.org/10.4014/jmb.0807.459

Plant Cell Wall Degradation with a Powerful Fusarium graminearum Enzymatic Arsenal  

Phalip, Vincene (UMR 7175, ESBS, Universite Louis Pasteur)
Goubet, Florence (Department of Biochemistry, University of Cambridge)
Carapito, Raphael (UMR 7175, ESBS, Universite Louis Pasteur)
Jeltsch, Jean-Marc (UMR 7175, ESBS, Universite Louis Pasteur)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.6, 2009 , pp. 573-581 More about this Journal
Abstract
The complex enzyme pool secreted by the phytopathogenic fungus Fusarium graminearum in response to glucose or hop cell wall material as sole carbon sources was analyzed. The biochemical characterization of the enzymes present in the supernatant of fungal cultures in the glucose medium revealed only 5 different glycosyl hydrolase activities; by contrast, when analyzing cultures in the cell wall medium, 17 different activities were detected. This dramatic increase reflects the adaptation of the fungus by the synthesis of enzymes targeting all layers of the cell wall. When the enzymes secreted in the presence of plant cell wall were used to hydrolyze pretreated crude plant material, high levels of monosaccharides were measured with yields approaching 50% of total sugars released by an acid hydrolysis process. This report is the first biochemical characterization of numerous cellulases, hemicellulases, and pectinases secreted by F. graminearum and demonstrates the usefulness of the described protein cocktail for efficient enzymatic degradation of plant cell wall.
Keywords
Cell wall degrading enzyme; xylanase; cellulase; fungus; polysaccharide; bioethanol;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Aro, N., T. Pakula, and M. Penttila. 2005. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol. Rev. 29: 719-739   DOI   ScienceOn
2 Belien, T., S. Van Campenhout, M. Van Acker, and G. Volckaert. 2005. Cloning and characterization of two endoxylanases from the cereal phytopathogen Fusarium graminearum and their inhibition profile against endoxylanase inhibitors from wheat. Biochem. Biophys. Res. Commun. 327: 407-414   DOI   ScienceOn
3 Durand, H., M. Clanet, and G. Tiraby. 1988 Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme Microb. Technol. 10: 341-346   DOI   ScienceOn
4 Hatsch, D., V. Phalip, E. Petkowski, and J.-M. Jeltsch. 2006. Fusarium graminearum on plant cell wall: No fewer than 30 xylanase genes transcribed. Biochem. Biophys. Res. Commun. 345: 959-966   DOI   ScienceOn
5 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428   DOI
6 Nagy, T., D. Nurizzo, G. J. Davies, P. Biely, J. H. Lakey, D. N. Bolam, and J. H. Gilbert. 2003. The α-glucuronidase, GlcA67A, of Cellvibrio japonicus utilizes the carboxylate and methyl groups of aldobiouronic acid as important substrate recognition determinants. J. Biol. Chem. 278: 20286-20292   DOI   ScienceOn
7 Sørensen, H. R., S. Pedersen, C. T. Jorgensen, and A. S. Meyer. 2007. Enzymatic hydrolysis of wheat arabinoxylan by a recombinant 'minimal' enzyme cocktail containing ${\beta}$-xylosidase and novel endo-1,4-${\beta}$-xylanase and ${\alpha}$-L-arabinofuranosidase activities. Biotechnol. Progress 23: 100-107   DOI   PUBMED   ScienceOn
8 Sulzenbacher, G., M. Schulein, and G. J. Davies. 1997. Structure of the endoglucanase I from Fusarium oxysporum: Native, cellobiose, and 3,4-epoxybutyl ${\beta}$-D-cellobioside-inhibited forms, at 2.3 ${\AA}$ resolution. Biochemistry 36: 5902-5911   DOI   PUBMED   ScienceOn
9 Goubet, F., A. Strom, B. Quemener, E. Stephens, M. A. K. Williams, and P. Dupree. 2006. Resolution of the structural isomers of partially methylesterified oligogalacturonides by polysaccharide analysis using carbohydrate gel electrophoresis. Glycobiology 16: 29-35   DOI   ScienceOn
10 Tabka, M. G., I. Herpoel-Gimbert, F. Monod, M. Asther, and J. C. Sigoillot. 2006. Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microb. Technol. 39: 897-902   DOI   ScienceOn
11 Goubet, F., B. Morriswood, and P. Dupree. 2003. Analysis of methylated and unmethylated polygalacturonic acid structure by polysaccharide analysis using carbohydrate gel electrophoresis. Anal. Biochem. 321: 174-182   DOI   ScienceOn
12 Douaiher, M.-N., E. Nowak, V. Dumortier, R. Durand, P. Reignault, and P. Halama. 2007. Mycosphaerella graminicola produces a range of cell wall-degrading enzyme activities in vitro that vary with the carbon source. Eur. J. Plant Pathol. 117: 71-79   DOI   ScienceOn
13 Federici, L., C. Caprari, B. Mattei, C. Savino, A. Di Matteo, G. De Lorenzo, F. Cervone, and D. Tsernoglou. 2001. Structural requirements of endopolygalacturonase for the interaction with PGIP (polygalacturonase-inhibiting protein). Proc. Natl. Acad. Sci. U.S.A. 98: 13425-13430   DOI   ScienceOn
14 Urban, M., S. Daniels, E. Mott, and K. Hammond-Kosack. 2002. Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusarium graminearum and Fusarium culmorum. Plant J. 32: 961-973   DOI   ScienceOn
15 Roncero, M. I. G., A. Di Pietro, M. C. Ruiz-Roldan, M. D. Huertas-Gonzalez, F. I. Garcia-Maceira, E. Meglecz, et al. 2000. Role of cell wall-degrading enzymes in pathogenicity of Fusarium oxysporum. Rev. Iberoamericana Micol. 17: S47-S53
16 Weil, J., P. Westgate, K. Kohlmann, and M. R. Ladisch. 1994. Cellulose pretreatments of lignocellulosic substrates. Enzyme Microb. Technol. 16: 1002-1004   DOI   ScienceOn
17 Hegedus, D. D. and S. R. Rimmer. 2005. Sclerotinia sclerotiorum:When 'to be or not to be' a pathogen? FEMS Microbiol. Lett. 251: 177-184   DOI   ScienceOn
18 Mitchell, D. B., K. Weimann, B. J. Vogel, L. Pasamontes, and A. P. G. M. van Loon. 1997. The phytase subfamily of histidine acid phosphatases: Isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143: 245-252   DOI   ScienceOn
19 Guo, W., L. Gonzalez-Candelas, and P. E. Kolattukudy. 1995. Cloning of a novel constitutively expressed pectate lyase gene pelB from Fusarium solani f. sp. pisi (Nectria haematococca, mating type VI) and characterization of the gene product expressed in Pichia pastoris. J. Bacteriol. 177: 7070-7077   DOI
20 Phalip, V., F. Delalande, C. Carapito, F. Goubet, D. Hatsch, E. Leize-Wagner, P. Dupree, A. VanDorsselaer, and J.-M. Jeltsch. 2005. Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Curr. Genet. 48: 366-379   DOI   ScienceOn
21 Pauly, M. and K. Keegstra. 2008. Physiology and metabolism 'Tear down this wall.' Curr. Opin. Plant Biol. 11: 233-235   DOI   ScienceOn
22 Agrios, G. N. 1997. Plant Pathology, 4th Ed. Academic Press, London
23 Gray, K. A., L. Zhao, and M. Emptage. 2006. Bioethanol. Curr. Opin. Chem. Biol. 10: 141-146   DOI   ScienceOn
24 Goubet, F., A. Ström, P. Dupree, and M. A. K. Williams. 2005. An investigation of pectin methylesterification patterns by two independent methods: Capillary electrophoresis and polysaccharide analysis using carbohydrate gel electrophoresis. Carbohydr. Res. 340: 1193-1199   DOI   ScienceOn
25 Palackal, N., C. S. Lyon, S. Zaidi, P. Luginbühl, P. Dupree, F. Goubet, et al. 2007. A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut. Appl. Microbiol. Biotechnol. 74: 113-124   DOI   ScienceOn
26 Lynd, L. R., M. S. Laser, D. Bransby, B. E. Dale, B. Davison, R. Hamilton, et al. 2008. How biotech can transform biofuels. Nat. Biotechnol. 26: 169-172   DOI   ScienceOn
27 Misas-Villamil, J. C. and R. A. van der Hoorn. 2008. Enzymeinhibitor interactions at the plant-pathogen interface. Curr. Opin. Plant Biol. (in press: DOI: 10.1016/ j.pbi.2008.04.007)
28 Sposato, P., J. H. Ahn, and J. D. Walton. 1995. Characterization and disruption of a gene in the maize pathogen Cochliobolus carbonum encoding a cellulase lacking a cellulose binding domain and hinge region. Mol. Plant Microbe Interact. 8: 602-609   DOI   ScienceOn
29 Carapito, R., C. Carapito, J.-M. Jeltsch, and V. Phalip. 2009. Efficient hydrolysis of hemicellulose by a Fusarium graminearum xylanase blend produced at high levels in Escherichia coli. Bioresource Technol. 100: 845-850   DOI   ScienceOn
30 Hogg, D., G. Pell, P. Dupree, F. Goubet, S. M. Martin-Orue, S. Armand, and H. J. Gilbert. 2003. The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Biochem. J. 371: 1027-1043   DOI   ScienceOn
31 Ralet, M.-C., J. C. Cabrera, E. Bonnin, B. Quemener, P. Hellin, and J.-F. Thibault. 2005. Mapping sugar beet pectin acetylation pattern. Phytochemistry 66: 1832-1843   DOI   ScienceOn
32 Kim, T. H., F. Taylor, and K. B. Hicks. 2008. Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresource Technol. 99: 5694-5702   DOI   ScienceOn