• Title/Summary/Keyword: Cell wall

Search Result 1,892, Processing Time 0.028 seconds

Localization of Paclitaxel in Suspension Culture of Taxus chinensis

  • Choi, Hyung-Kyoon;Kim, Sang-Ic;Song, Jai-Young;Son;Hong, Seung-Suh;Durzan, Don-J.;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.458-462
    • /
    • 2001
  • The localization of paclitaxel was investigated in suspension culture cells of Taxus chinensis. Over 93% of the cell-associated paclitaxel were detected throughout the entire culture period. Intracellular localization of paclitaxel over the culture time was analyzed further by cell fractionation for days 21 and 42. Paclitaxel contents in intracellular organelles were decreased at day 42, while the content in the cell wall fraction was increased at day 42 compared to the value for day 21. The localization of paclitaxel in the cell wall was confirmed by using the immunocytochemical method with the aid of a confocal laser scanning microscope.

  • PDF

Textural Properties and Cell Wall Components of Dried Persimmon according to Varieties (품종에 따른 건시의 물성적 특성과 세포벽 성분)

  • Sohn, Tae-Hwa;Moon, Kwang-Deok;Lee, Nak-Hoon
    • Journal of the Korean Society of Food Culture
    • /
    • v.6 no.3
    • /
    • pp.229-235
    • /
    • 1991
  • This study is performed to investigate the relation between cell components and hardness which affect to the quality of dried persimmons. Moisture contents of dried persimmons were interrange of 30 to 36%. Enpung Junsi (EJ), Dungsi (Young dong) (DY) and Haman Susi (HS) had higher moisture contents than Dungsi (Sang Ju) (DS), Kojongsi (KS) and Hagakure (HK). Hardness was high in the varieties which has low moisture content such as DS, KS and HK. The significant differences of hardness and fracturability among varieties were appeared conspicuously but those of cohesiveness, adhesiveness and springiness were not appeared. Crude cell wall content, pectin and calcium content of cell wall were high in hard varieties. In the pectin fractions, water soluble pectin content was high in EJ, HS and DY but that of acid and alkali soluble pectin were high in DS, KS and HK. The cell wall of high hardness varieties observed thick and firm than that of low hardness varieties.

  • PDF

Anatomical Characteristics and Air-dry Density of Young Trees of Teak Clones Planted in Indonesia

  • Hidayati, Fanny;Ishiguri, Futoshi;Marsoem, Sri Nugroho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.463-470
    • /
    • 2017
  • The objectives of this study are to obtain the basic knowledge of anatomical characteristics and wood properties of thinning trees of young teak (Tectona grandis L.F.) for fulfill the timber demand in Indonesia. Nine thinning trees of 5-year-old teak clone trees were used for analyzing the cell morphology and air-dry density. Vessel diameters in pore and outer pore zones were 165 and $90{\mu}m$, respectively. Mean value of fiber diameter, cell wall thickness, and fiber length in outer pore zone were $14.6{\mu}m$, $2.07{\mu}m$, and 1.04 mm, respectively. In addition, mean value of air-dry density was $0.55g/cm^3$. The measurement and values of vessel diameter, fiber diameter, cell wall thickness, fiber length and air-dry density in the experimental had lower than those in the older teak. Therefore, it could be suggested that the wood from thinning young teaks was not appropriate as construction material, but it could be used for furniture which do not need high of strength properties. Furthermore, since the measurements values of anatomical characteristics were still increasing from pith to bark, it could be suggested that 5-year-old teak clones are still in a juvenile phase. Positively significant correlations were found between air-dry density and cell wall thickness, indicating that cell wall thickness is strongly correlated with wood density of teak.

Immune-Enhancing Alkali-Soluble Glucans Produced by Wild-Type and Mutant Saccharomyces cerevisiae

  • Ha Chang-Hoon;Lim Ki-Hong;Jang Se-Hwan;Yun Cheol-Won;Paik Hyun-Dong;Kim Seung-Wook;Kang Chang-Won;Chang Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.576-583
    • /
    • 2006
  • The alkali-soluble glucan of the yeast cell wall contains $\beta-(1,3)-$ and (1,6)-D-linkages and is known to systemically enhance the immune system. In the previous study [6], in order to isolate cell wall mutants, a wild-type strain was mutagenized by exposure to ultraviolet light, and the mutants were then selected via treatment with laminarinase $(endo-\beta-(1,3)-D-glucanase)$. The mass of alkali- and water-soluble glucans produced by the mutant was measured to be 33.8 mg/g of the dry mass of the yeast cell. Our results showed that the mutants generated the amount of alkali-soluble glucan 10-fold higher than that generated by the wild-type. Structural analysis showed that the alkali-soluble glucan from the mutants was associated with a higher degree of $\beta-(1,6)-D-linkage$ than was observed in conjunction with the wild-type. Yeast cell wall $\beta-glucan$ was shown to interact with macrophages via receptors, thereby inducing the release of tumor necrosis factor alpha $(TNF-\alpha)$ and nitric oxide. Alkali-soluble $\beta-glucans$, both from water-soluble and water-insoluble glucan, exhibited a higher degree of macrophage activity with regard to both the secretion of tumor necrosis factor alpha $(TNF-\alpha)$ and nitric oxide and direct phagocytosis, than did the positive control ($1{\mu}g$ of lipopolysaccharide).

Interacting Domain Between Yeast Chitin Synthase 3 and Chitin Synthase 4 is Involved in Biogenesis of Chitin Ring, but not for Cell Wall Chitin

  • Choi, Shin-Jung;Park, Nok-Hyun;Park, Hyun-Sook;Park, Mee-Hyun;Woo, Jee-Eun;Choi, Won-Ja
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.263-268
    • /
    • 2003
  • Recently, we identified a domain, termed MIRC3-4, for the protein-protein interaction between yeast chitin synthase 3 (CHS3) and chitin synthase 4 (CHS4). In this study, the functional roles of MIRC3-4 were examined at the G1 phase and cytokinesis of the cell cycle by Calcofluor staining and FISH. Some mutations in MIRC3-4 resulted in disappearance of the chitin ring in the early G1 phase, but did not affect chitin synthesis in the cell wall at cytokinesis. The chitin distribution in chs4 mutant cells indicated that CHS4 was involved in the synthesis of chitinring in the G1 phase and in the synthesis of cell wall chitin after cytokinesis, suggesting that Chs4p regulates chitin synthase 3 activity differently in G1 and cytokinesis. Absence of the chitin ring could be caused either by delocalization of Chs3p to the bud-neck or by improper interaction with Chs4p. When mutant cells were immunostained with a Chs3p-specific antibody to discriminate between these two alternatives, the mutated Ch3p was found to localize to the neck in all MIRC3-4 mutants. These results strongly irdicate that Chs4p regulates Chs3p as an activator but not a recruiter.

Changes on the Cell Wall Components of Jujube Fruits during Drying (대추 천일건조 중 세포벽 구성성분의 변화)

  • 손미애;김미현;신승렬;송준희;김광수
    • Food Science and Preservation
    • /
    • v.5 no.4
    • /
    • pp.350-354
    • /
    • 1998
  • This paper was investigated to changes of cell components during drying for studies on the softening of jujube fruits. The contents of alcohol-insoluble material, cell wall and water-soluble material were not changed at 6 days of drying, but alcohol-insoluble materials and cell wall were decreased at 9 days of drying, however water-soluble materials were increased. Pectin and hemicellulose were not changed at 6 days of drying. Pectin and alkali-soluble hemicellulose were remarkable decreased at 9 days of drying, but acid-soluble hemicellulose was increased. Water-soluble pectin was not changed at 6 days of drying, but increased at 9 days of drying. EDTA-soluble and insoluble pectin were decreased after 6 days of drying. The non-cellulosic neutral sugars were not changed at 6 days of drying. The contents of arabinose, galactose and total neutral suger were decreased at 9 days of drying.

  • PDF

Physicochemical Characters of Ultra Violet Ray Resistant Deinococcus sp. Isolated from Air Dust

  • Nalae, Yun;Lee, In-Jeong;Lee, Young-Nam
    • Korean Journal of Microbiology
    • /
    • v.30 no.6
    • /
    • pp.483-487
    • /
    • 1992
  • Among a few number of UV-resistant isolated form various environmental sources (10), we made a comparative physio-chemoanalytical study on one of spherical bacteria isolated from air dust, presumably Deinococcus sp. (CM strain 29) with an UV resistant bacterium, Deinococcus radiophilus ATCC 27603 as the reference strain. Our isolate of UV resistant coccus, Deinococcus sp. CM 29 and D. radiophilus ATCC 27603 showed more than 75% matching coefficient in metabolic activity of various substrates. The most predominant cellular fatty acid of both strains was palmitoleic acid (C 16 :1, cis 9), but the detail fatty acid profiles were slightly dissimilar to each other. Cell-bound arange pigment seemed to be an identical chemicals on spectrophotometric analysis. L-ornithine was detected as cell-wall amino acid in both strains. Galactose was detected as cell-wall sugar in D. radiophilus ATCC 27603, whereas glucose in Deinococcus sp. CM 29. G-C molar ratio of both strains was comparable, 63-65%.

  • PDF

Histological and Cytological Changes Associated with Susceptible and Resistant Responses of Chili Pepper Root and Stem to Phytophthora capsici Infection

  • Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • Microscopic study of chili pepper (Capsicum annuum L.) infected with Phytophthora capsici, causing Phytophthora blight of chili pepper, was conducted to compare histological and cytological characteristics in the root and stem of susceptible (C. annuum cv. Bugang) and resistant (C. annuum cv. CM334) pepper cultivars. The susceptible pepper roots and stems were extensively penetrated and invaded by the pathogen initially into epidermal cells and later cortical and vascular cells. Host cell walls adjacent to and invaded by the infecting hyphae were partially dissolved and structurally loosened with fine fibrillar materials probably by cell wall-degrading enzymes of the pathogen. In the resistant pepper, the pathogen remained on root epidermal surface at one day after inoculation, embedded and captured in root exudation materials composed of proteins and polysaccharides. Also the pathogen appeared to be blocked in its progression at the early infection stages by thickened middle lamellae. At 3 days after inoculation, the oomycete hyphae were still confined to epidermal cells of the root and at most outer peripheral cortical cells of the stem, resulting from their invasion blocked by wound periderms formed underneath the infection sites and/or cell wall appositions bounding the hyphal protrusions. All of these aspects suggest that limitation of disease development in the resistant pepper may be due to the inhibition of the pathogen penetration, infection, invasion, and colonization by the defense structures such as root exudation materials, thickened middle lamellae, wound peridems and cell wall appositions.

Effect of Shear Stress on Bovine Aortic Smooth Muscle Cell Growth (우 대동맥 평활근 세포의 성장에 관한 shear stress의 영향)

  • 김동욱
    • KSBB Journal
    • /
    • v.11 no.1
    • /
    • pp.52-57
    • /
    • 1996
  • Bovine aortic smooth muscle cells cultured on the slide glass were exposed to sheared flow up to 120 hours in flow chamber to see the effect of shear stress on cell growth in wall shear stresses of 0 to 26dyn/$cm^2$. From lactate dehydrogenase concentration measurement of the circulating medium, it was shown that sheared flow in the shear stress range did not remove additional smooth muscle cells from the slide glass compared with cells in stationary condition. According to smooth muscle cell counting per$cm^2$ of the surface, smooth muscle cells grew fastest in the stationary condition. As the wall shear stress increased, the growth of cells became slower. When the wall shear stress increased over 17dyn/$cm^2$, cell growth was not observed throughout the experiment.

  • PDF

Inhibition of cell wall synthesis in Cryptococcus neoformans and decrease of skin allergy induced with Alternaria alternata in mouse model by a chitinase from an inky cap (먹물버섯 키틴질 분해효소에 의한 인체유해성 Cryptococcus neoformans 세포벽 생성억제 및 Alternaria alternata에 기인한 생쥐의 피부알레르기의 감소)

  • Kang, Yuri;Choi, Hyoung T.
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.226-229
    • /
    • 2016
  • The growth of two different fungal species, human pathogenic Cryptococcus neoformans and plant pathogenic Alternaria alternata were inhibited by a chitinase (Chi2) expressed in the autolysing tissue of Coprinellus congregatus. The cell wall thickness was reduced (up to 32%) in C. neoformans compared with that of normal cell, and polysaccharide fibers located outside of the cell wall were also severely removed. The hyphal growth of A. alternata on agar plate was stopped by the enzyme. The allergic inflammation induced by A. alternata was reduced by the enzyme reaction when compared with untreated control in a mouse model.