• Title/Summary/Keyword: Cell throughput

Search Result 503, Processing Time 0.026 seconds

Radio Resource Scheduling Approach For Femtocell Networks

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.394-400
    • /
    • 2022
  • The radio resources available in a wireless network system are limited. Therefor, job of managing resources is not easy task. Because the resources are shared among the UEs that are connected, the process of assigning resources must be carefully controlled. The packet scheduler in an LTE network is in charge of allocating resources to the user equipment (UE). Femtocells networks are being considered as a promising solution for poor channel performance for mulitple environments. The implementation of femtocells into a macrocell (traditional base station) would boost the capacities of the cellular network. To increase femtocells network capacity, a reliable Packet Scheduler mechanism should be implemented. The Packet Scheduler technique is introduced in this paper to maximize capacity of the network while maintaining fairness among UEs. The proposed solution operates in a manner consistent with this principle. An analysis of the proposed scheme's performance is conducted using a computer simulation. The results reveal that it outperforms the well-known PF scheduler in terms of cell throughput and average throughput of UEs.

Cyclosporine A and bromocriptine attenuate cell death mediated by intracellular calcium mobilization

  • Kim, In-Ki;Park, So-Jung;Park, Jhang-Ho;Lee, Seung-Ho;Hong, Sung-Eun;Reed, John C.
    • BMB Reports
    • /
    • v.45 no.8
    • /
    • pp.482-487
    • /
    • 2012
  • To identify the novel inhibitors of endoplasmic reticulum stress-induced cell death, we performed a high throughput assay with a chemical library containing a total of 3,280 bioactive small molecules. Cyclosporine A and bromocriptine were identified as potent inhibitors of thapsigargiin-induced cell death (cut-off at $4{\sigma}$ standard score). However, U74389G, the potent inhibitor of lipid peroxidation had lower activity in inhibiting cell death. The inhibition effect of cyclosporine A and bromocriptine was specific for only thapsigargin-induced cell death. The mechanism of inhibition by these compounds was identified as modification of the expression of glucose regulated protein-78 (GRP-78/Bip) and inhibition of phosphorylation of p38 mitogen activated protein kinase (MAPK). However, these compounds did not inhibit the same events triggered by tunicamycin, which was in agreement with the cell survival data. We suggest that the induction of protective unfolded protein response by these compounds confers resistance to cell death. In summary, we identified compounds that may provide insights on cell death mechanisms stimulated by ER stress.

Interference Effect of Microwave Oven Noise to Wireless LAN Using a GTEM Cell (GTEM Cell을 이용한 전자레인지 잡음이 무선 랜에 미치는 간섭 영향 분석)

  • Chung, Yeon-Choon;Jeon, Sang-Bong;Kwun, Suk-Tai;Yun, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.240-247
    • /
    • 2009
  • In this paper, we proposed the method of the interference evaluation between the microwave oven noise and the wireless LAN(Local Area Network) by using the GTEM cell. We used microwave oven noise in time to assess the interference unintentional noise effects on wireless LAN and realized by combining an AM(Amplitude Modulation) modulator and a FM(frequency Modulation) modulator. Also the GTEM cell can be used to guarantee the reliability by the evaluations of the frequency and time responses. As measurement results for the APD(Amplitude Probability Distribution) of the interfering noise we analyzed the effect of microwave oven noise to the throughput of wireless LAN.

High-Throughput QC-LDPC Decoder Architecture for Multi-Gigabit WPAN Systems (멀티-기가비트 WPAN 시스템을 위한 고속 QC-LDPC 복호기 구조)

  • Lee, Hanho;Ajaz, Sabooh
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.104-113
    • /
    • 2013
  • A high-throughput Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) decoder architecture is proposed for 60GHz multi-gigabit wireless personal area network (WPAN) applications. Two novel techniques which can apply to our selected QC-LDPC code are proposed, including a four block-parallel layered decoding technique and fixed wire network. Two-stage pipelining and four block-parallel layered decoding techniques are used to improve the clock speed and decoding throughput. Also, the fixed wire network is proposed to simplify the switch network. A 672-bit, rate-1/2 QC-LDPC decoder architecture has been designed and implemented using 90-nm CMOS standard cell technology. Synthesis results show that the proposed QC-LDPC decoder requires a 794K gate and can operate at 290 MHz to achieve a data throughput of 3.9 Gbps with a maximum of 12 iterations, which meet the requirement of 60 GHz WPAN applications.

High-speed Radix-8 FFT Structure for OFDM (OFDM용 고속 Radix-8 FFT 구조)

  • Jang, Young-Beom;Hur, Eun-Sung;Park, Jin-Su;Hong, Dae-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.84-93
    • /
    • 2007
  • In this paper, a Radix-8 structure for high-speed FFT is propose. Main block of the proposed FFT structure is Radix-8 DIF(Decimation In Frequency) butterfly. Even throughput of the Radix-8 FFT is twice than that of the Radix-4 FFT, implementation area of the Radix-8 is larger than that of Radix-4 FFT. But, implementation area of the proposed Radix-8 FFT was reduced by using DA(Distributed Arithmetic) for multiplication. For comparison, the 64-point FFT was implemented using conventional Radix-4 butterfly and proposed Radix-8 butterfly, respectively. The Verilog-HDL coding results for the proposed FFT structure show 49.2% cell area increment comparison with those of the conventional Radix-4 FFT structure. Namely, to speed up twice, 49.2% of area cost is required. In case of same throughput, power consumption of the proposed structure is reduced by 25.4%. Due to its efficient processing scheme, the proposed FFT structure can be used in large size of FFT like OFDM Modem.

Detection of the cell wall-affecting antibiotics at sublethal concentrations using a reporter Staphylococcus aureus harboring drp35 promoter - lacZ transcriptional fusion

  • Mondal, Rajkrishna;Chanda, Palas K.;Bandhu, Amitava;Jana, Biswanath;Lee, Chia-Y.;Sau, Subrata
    • BMB Reports
    • /
    • v.43 no.7
    • /
    • pp.468-473
    • /
    • 2010
  • Previously, various inhibitors of cell wall synthesis induced the drp35 gene of Staphylococcus aureus efficiently. To determine whether drp35 could be exploited in antistaphylococcal drug discovery, we cloned the promoter of drp35 ($P_d$) and developed different biological assay systems using an engineered S. aureus strain that harbors a chromosomally-integrated $P_d$ - lacZ transcriptional fusion. An agarose-based assay showed that $P_d$ is induced not only by the cell wall-affecting antibiotics but also by rifampicin and ciprofloxacin. In contrast, a liquid medium-based assay revealed the induction of $P_d$ specifically by the cell wall-affecting antibiotics. Induction of $P_d$ by sublethal concentrations of cell wall-affecting antibiotics was even assessable in a microtiter plate assay format, indicating that this assay system could be potentially used for high-throughput screening of new cell wall-inhibiting compounds.

Engineered microdevices for single cell immunological assay

  • Choi, Jong-Hoon
    • Interdisciplinary Bio Central
    • /
    • v.2 no.2
    • /
    • pp.1.1-1.8
    • /
    • 2010
  • Microdevices have been used as effective experimental tools for the rapid and multiplexed analysis of individual cells in single-cell assays. Technological advances for miniaturizing such systems and the optimization of delicate controls in micron-sized space homing cells have motivated many researchers from diverse fields (e.g., cancer research, stem cell research, therapeutic agent development, etc.) to employ microtools in their scientific research. Microtools allow high-throughput, multiplexed analysis of single cells, and they are not limited by the lack of large samples. These characteristics may significantly benefit the study of immune cells, where the number of cells available for testing is usually limited. In this review, I present an overview of several microtools that are currently available for single-cell analyses in two popular formats: microarrays and microfluidic microdevices. Then, I discuss the potential to study human immunology on the single-cell level, and I highlight several recent examples of immunoassays performed with single-cell microdevice assays. Finally, I discuss the outlook for the development of optimized assay platforms to study human immune cells. The development and application of microdevices for studies on single immune cells presents novel opportunities for the qualitative and quantitative characterization of immune cells and may lead to a comprehensive understanding of fundamental aspects of human immunology.

Single-cell and spatial transcriptomics approaches of cardiovascular development and disease

  • Roth, Robert;Kim, Soochi;Kim, Jeesu;Rhee, Siyeon
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.393-399
    • /
    • 2020
  • Recent advancements in the resolution and throughput of single-cell analyses, including single-cell RNA sequencing (scRNA-seq), have achieved significant progress in biomedical research in the last decade. These techniques have been used to understand cellular heterogeneity by identifying many rare and novel cell types and characterizing subpopulations of cells that make up organs and tissues. Analysis across various datasets can elucidate temporal patterning in gene expression and developmental cues and is also employed to examine the response of cells to acute injury, damage, or disruption. Specifically, scRNA-seq and spatially resolved transcriptomics have been used to describe the identity of novel or rare cell subpopulations and transcriptional variations that are related to normal and pathological conditions in mammalian models and human tissues. These applications have critically contributed to advance basic cardiovascular research in the past decade by identifying novel cell types implicated in development and disease. In this review, we describe current scRNA-seq technologies and how current scRNA-seq and spatial transcriptomic (ST) techniques have advanced our understanding of cardiovascular development and disease.

A Continuous Cell Separation Chip Using Hydrodynamic Dielectrophoresis Process (유체동역학적 유전영동법을 이용한 극소형 연속 세포분리기)

  • Doh Il;Cho Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.53-58
    • /
    • 2005
  • We present a high-throughput continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. The continuous cell separation chip uses three planar electrodes in a separation channel, where the positive DEP cells are moved away from the central streamline while the negative DEP cells remain in the central streamline. In the experimental study, we use the mixture of viable (live) and nonviable (dead) yeast cells in order to obtain the continuous cell separation conditions. For the conditions of the electric fields frequency of 5MHz and the medium conductivity of $5{\mu}S/cm$, the fabricated chip performs a continuous separation of the yeast cell mixture at the varying flow-rate in the range of $0.1{\sim}{\mu{\ell}/min$.; thereby, resulting in the purity ranges of $95.9{\sim}97.3\%\;and\;64.5{\sim}74.3\%$ respectively for the viable and nonviable yeast cells. present chip demonstrates the constant cell separation performance for varying mixture flow-rates.

A study on the measurement method of raw laver weight using load cell (로드셀을 이용한 생김 중량측정 방법에 관한 연구)

  • Eun-Bi MIN;Tae-Jong KANG;Eun-A YOON;Ok-Sam KIM;Doo-Jin HWANG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.3
    • /
    • pp.215-220
    • /
    • 2023
  • This study developed and evaluated a load cell-based automatic weighing system for the automated harvesting of laver (Porphyra tenera) in seaweed aquaculture. The current manual harvesting process was compared with the load cell-based automated system, and quantitative measurements of time, distance, and weight were conducted. The results demonstrated that the load cell-based system reduced the unloading time and increased the throughput compared to the manual method. In addition, statistical analysis confirmed that there was no significant difference from the mean in the weight measurement obtained using the load cell-based system. Based on these findings, the load cell-based automatic weighing system holds potential for efficient production and transactions in laver cultivation, contributing to cost reduction and improving the quality of life for aquaculture workers.