• Title/Summary/Keyword: Cell temperature

Search Result 4,481, Processing Time 0.034 seconds

Comparison of Polymer Electrolyte Membrane Fuel Cell performance obtained by 1D and CFD simulations (1D와 CFD(Computational fluid dynamic) 시뮬레이션을 통한 PEMFC(Polymer Electrolyte Membrane Fuel Cell) 성능 비교)

  • Wonwoo Jeon;Sehyeon An;Jaewan Yang;Jiwon Lee;Hyunbin jo;Eunseop Yeom
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.49-56
    • /
    • 2023
  • The Polymer electrolyte membrane fuel cell (PEMFC) operates at ambient temperature as a low-temperature fuel cell. During its operation, voltage losses arise due to factors such as operating conditions and material properties, effecting its performance. Computational simulations of fuel cells can be categorized into 1D simulation and CFD, chosen based on their specific application purposes. In this study, we carried out an analysis validation using 1D geometry and compared its performance with the results from 2D geometry analysis. CFD allows for the representation of pressure, velocity distribution, and fuel mass fraction according to the geometry, enabling the analysis of current density. However, the 1D simulation, simplifying governing equations to reduce time cost, failed to accurately account for fuel distribution and changes in fuel concentration due to fuel cell operations. As a result, it showed unrealistic results in the cell voltage region dominated by concentration loss compared to CFD.

Analysis of Power Pattern According to Irradiation for Photovoltaic Generation System (태양광발전 시스템의 일사량에 따른 전력 패턴 분석)

  • Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.602-608
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. As I-V characteristics according to a temperature range of 10~50[$^{\circ}C$], the area of I-V characteristics were increased with an increase in temperature. Since this area corresponds to the power, output power is thought to have increased with temperature. As output power characteristics according to a temperature range of 10~50[$^{\circ}C$], output power was increased with an increase in temperature. Since output power increases with temperature increase, the result corresponds well to the related equation on temperature and output power. As I-V characteristics according to a irradiation range of 100~900 [$W/m^2$], voltage and current were increased with an increase in irradiation. The result is thought of as an increase in output power with increasing irradiation. As output power characteristics according to a irradiation range of 100~900 [$W/m^2$], output power was increased with increasing irradiation. This result corresponds well to the related equation on irradiation and output power.

Experimental Study of Natural Convection Due to Combined Buoyancy in a Rectangular Enclosure (직각 밀폐용기내의 복합부력에 의한 자연대류에 관한 실험적 연구)

  • 이진호;현명택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.247-256
    • /
    • 1986
  • An experimental investigation was conducted to study natural convection due to temperature and concentration differences between the two opposite end walls of a rectangular enclosure of aspect ratio 0.2. Flow motion in the enclosure appears as a uni-cell flow pattern for the relatively lower concentration and higher temperature differences and vice versa, while it appears as a multicell flow pattern for the comparable temperature and concentration differences. In the multi-cell flow regime, when the cellular flow motiion is very slow, vertical temperature differences within the cells are negligible while the vertical concentration differences are large. In addition, both the temperature and concentration differences are negligible across the interface between the slowly moving cells. For the fast moving cellular flow motion, on thel contrary, vertical temperature differences within the cells are large while the vertical concentration differences are negligible. In this case, temperature differences are negligible and the concentration differences are large across the interface between the fase moving cells.

Temperature effects on the growth and morphology of Anabaena sp.: lab-scale investigation and onsite validation

  • Oh Kyung Choi;Dong Hyuk Shin;Dandan Dong;Sung Kyu Maeng;Jungsu Park;Jae Woo Lee
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.11-19
    • /
    • 2024
  • This study presents the characteristics of growth and morphology of Anabaena sp., a representative filamentous cyanobacterium, depending on temperature variation from 10 to 30 ℃. Both the filament density (or number) and its length of Anabaena were highly affected by temperature, as well as growth stage. Rapid growth at a higher temperature led to an increase in Anabaena filament density, as well as optical density at 680 nm (OD680). However, the number of vegetative cells within a single filament of Anabaena grown at 30 ℃ was smaller than those grown at lower temperatures, due to the intercalary division of the filament. Of the three different cells comprising a single Anabaena filament, the vegetative cell marginally affects the growth of Anabaena. The main dimensions of the vegetative cell, i.e., length and width, depend on the temperature and growth stage. The length-to-width (L/W) ratios of vegetative cells and akinetes were relatively consistent regardless of the temperature. However, in vegetative cells with dichotomous growth, the L/W ratio shows clear differences depending on their growth stage. It has been demonstrated that the L/W ratio could be used as an indicator to indirectly predict the growth stage of on-sit Anabaena samples.

Hibernation of Mammalian Cells at a Living Body Temperature

  • Hyon, Suong-Hyu;Kim, Do-Hoon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.4
    • /
    • pp.289-292
    • /
    • 2001
  • The present study revealed that polyphenol induces the hibernation of mammalian cells at the living body temperature. It was found that polyphenol is a cytostatic sleeping agent for mam-malian cells, where almost all cells resume proliferation after the hibernation period and cell death seldom occurs. By changing the concentration for polyphenol, various mammalian cells can be stored under different conditions, such as temporary sleep, and hibernation condi-tions.

  • PDF

A Study on Performance of PEMFC with Variations on Stack Temperature and Mass Flow Rate (스택온도 및 유량변화에 따른 PEMFC의 출력특성 연구)

  • Park, Se-Joon;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.140-140
    • /
    • 2009
  • The polymer electrolyte membrane fuel cell(PEMFC) with the advantages of low-operating temperature, high current density, low cost and volume, fast start-up ability, and suitability for discontinuous operation becomes the most reasonable and attractive power system for transportation vehicle and micro-grid power plant in a household. 200W PEM-type FCs system was integrated by this study, then the electrical characteristics and diagnosis of the fuel cell were analyzed with variations on mass flow rate and stack temperature. The ranges of the variations are $20{\sim}70^{\circ}C$ on stack temperature and 1~8L/min on $H_2$ volume.

  • PDF

Effect of Temperature on the Accumulation of $Pb^{2+}$ in Saccharomyces cerevisiae

  • Suh, Jung-Ho;Yun, Jong-Won;Kim, Dong-Seog
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.412-415
    • /
    • 1998
  • The accumulation process of $Pb^{2+}$ in an industrial strain of Saccharomyces cerevisiae proved to be temperature-dependent, and was quite similar to chemical adsorption at the initial stage of $Pb^{2+}$accumulation. The initial $Pb^{2+}$ accumulation rate increased from 11.4 to 46.2 mg $Pb^{2+}$/g cell dry weight/day, in response to the increased temperature from $20^{\circ}C\;to\;50^{\circ}C$ while the maximal $Pb^{2+}$ accumulation amount (175.8 mg $Pb^{2+}$/g cell dry weight) was achieved at $30^{\circ}C$. The maximal $Pb^{2+}$/ accumulation amount with temperature was independent of ion exchange with $K^+\;and\;Mg^{2+}$.

  • PDF

Impact Analysis of NBTI/PBTI on SRAM VMIN and Design Techniques for Improved SRAM VMIN

  • Kim, Tony Tae-Hyoung;Kong, Zhi Hui
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.87-97
    • /
    • 2013
  • Negative bias temperature instability (NBTI) and positive bias temperature instability (PBTI) are critical circuit reliability issues in highly scaled CMOS technologies. In this paper, we analyze the impacts of NBTI and PBTI on SRAM $V_{MIN}$, and present a design solution for mitigating the impact of NBTI and PBTI on SRAM $V_{MIN}$. Two different types of SRAM $V_{MIN}$ (SNM-limited $V_{MIN}$ and time-limited $V_{MIN}$) are explained. Simulation results show that SNM-limited $V_{MIN}$ is more sensitive to NBTI while time-limited $V_{MIN}$ is more prone to suffer from PBTI effect. The proposed NBTI/PBTI-aware control of wordline pulse width and woldline voltage improves cell stability, and mitigates the $V_{MIN}$ degradation induced by NBTI/PBTI.

Characteristics of ZnO Thin Films Deposited with the Variation of Substrate Temperature and the Application As Buffer Layer in Organic Solar Cell (기판 온도 변화에 따라 증착되어진 ZnO 박막의 특성과 유기 태양전지의 버퍼층으로의 응용)

  • Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.648-651
    • /
    • 2015
  • The characterizations of zinc oxide (ZnO) buffer layers grown by unbalanced magnetron (UBM) sputtering under various substrate temperatures for inverted organic solar cells (IOSCs) were investigated. UBM sputter grown ZnO films exhibited higher crystallinity with increasing the substrate temperature, resulting in uniform and large grain size. Also, the electrical properties of ZnO films are improved with increasing substrate temperature. In the results, the performance of IOSCs critically depended on the substrate temperature during the film growth because the crystalllinity of the ZnO film affect the carrier mobility of the ZnO film.

A Process for the Control of Cell Size of 6061 Al foams by Multi-step Induction Heating Method (다출력 유도가열 공정을 이용한 다공질 6061 알루미늄 합금의 기공 제어 공정)

  • 윤성원;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.449-456
    • /
    • 2003
  • Multi-step induction heating process was applied to the powder compact melting technique as a new heating process to achieve pinpoint accuracy, faster cycle time, repeatability, non-contact and energy-efficient heat in a minimal amount of time. The objective of this study is the establishment of the input data diagram of multi step induction heating process for automation of the fabrication process of 6061 Al foams with desired density. At first, proper induction coil was designed to obtain a uniform temperature distribution over the entire cross sectional area of specimen. By using this coil, foaming experiments were performed to investigate the multi-step induction heating conditions such as capacity, temperature and time conditions of each heating and holding step. On the basis of the obtained multi-step induction heating conditions, relationship between final heating temperature and fraction of porosity was investigated.