• Title/Summary/Keyword: Cell staining

Search Result 2,177, Processing Time 0.033 seconds

Expanded IL-22+ Group 3 Innate Lymphoid Cells and Role of Oxidized LDL-C in the Pathogenesis of Axial Spondyloarthritis with Dyslipidaemia

  • Hong Ki Min;Jeonghyeon Moon;Seon-Yeong Lee;A Ram Lee;Chae Rim Lee;Jennifer Lee;Seung-Ki Kwok;Mi-La Cho;Sung-Hwan Park
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.43.1-43.14
    • /
    • 2021
  • Group 3 innate lymphoid cells (ILC3), which express IL-22 and IL-17A, has been introduced as one of pathologic cells in axial spondyloarthritis (axSpA). Dyslipidaemia should be managed in axSpA patients to reduce cardiovascular disease, and dyslipidaemia promotes inflammation. This study aimed to reveal the role of circulating ILC3 in axSpA and the impact of dyslipidaemia on axSpA pathogenesis. AxSpA patients with or without dyslipidaemia and healthy control were recruited. Peripheral blood samples were collected, and flow cytometry analysis of circulating ILC3 and CD4+ T cells was performed. The correlation between Ankylosing Spondylitis Disease Activity Score (ASDAS)-C-reactive protein (CRP) and circulating immune cells was evaluated. The effect of oxidized low-density lipoprotein cholesterol (oxLDL-C) on immune cell differentiation was confirmed. AxSpA human monocytes were cultured with with oxLDL-C, IL-22, or oxLDL-C plus IL-22 to evaluate osteoclastogenesis using tartrate-resistant acid phosphatase (TRAP) staining and real-time quantitative PCR of osteoclast-related gene expression. Total of 34 axSpA patients (13 with dyslipidaemia and 21 without) were included in the analysis. Circulating IL-22+ ILC3 and Th17 were significantly elevated in axSpA patients with dyslipidaemia (p=0.001 and p=0.034, respectively), and circulating IL-22+ ILC3 significantly correlated with ASDAS-CRP (Rho=0.4198 and p=0.0367). Stimulation with oxLDL-C significantly increased IL-22+ ILC3, NKp44- ILC3, and Th17 cells, and these were reversed by CD36 blocking agent. IL-22 and oxLDL-C increased TRAP+ cells and osteoclast-related gene expression. This study suggested potential role of circulating IL-22+ ILC3 as biomarker in axSpA. Furthermore, dyslipidaemia augmented IL-22+ ILC3 differentiation, and oxLDL-C and IL-22 markedly increased osteoclastogenesis of axSpA.

Neuroglial Reaction in the Substantia Nigra and Striatum of 6-Hydroxydopamine Induced Parkinson's Disease Rat Model (흰쥐 흑질내 수산화도파민 주입으로 유도된 파킨슨병 모델에서 흑질과 선조체의 신경교세포 반응)

  • Yang, Kyung Won;Sung, Jae Hoon;Kim, Moon Chan;Lee, Moon Yong;Lee, Sang Won;Choi, Seung Jin;Park, Choon Keun;Kang, Joon Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.6
    • /
    • pp.688-698
    • /
    • 2001
  • Objectives : Parkinson's disease is a well-known neurodegenerative disease characterized by dopaminergic cell death in the substantia nigra. The reactive gliosis by activated astrocytes and microglias is no more regarded as a simple sequel of neuronal cell death. Microglial activation takes place in a stereotypic pattern with graded morphologic and functional(resting, activated and phagocytic) changes. In Parkinson's disease animal model, the degree of microglial activation along the nigro-striatal dopaminergic tract has not been studied intensively. The purpose of this study was to elucidate the characteristics of microglial reaction and to grade its degree of activation at substantia nigra and corpus striatum using 6-hydroxydopamine induced rat model of Parkinson's disease. Methods : Using Sprague-Dawley rat, parkinsonian model was made by 6-hydroxydopamine(OHDA) induced destruction of medial and lateral substantia nigra(SN). The rat was sacrificed 3-, 5-, 7-, 14- and 21-day-after operation. For control group, we injected saline with same manner and sacrificed 3-day after operation. With immunohistochemistry, we examined dopaminergic neuronal cells and microglial expression using tyrosine hydroxylase (TH) and OX-42 antibodies, respectively. Also we performed in situ hybridization for osteopontin, a possible marker of subset in activated microglia. Results : 1) In lesioned side of substantia nigra and corpus striatum, the TH immunoreactivity was markedly decreased in whole experimental groups. 2) Using optical densitometry, microglia induced immunoreactivity of OX-42 was counted at SN and corpus striatum. At SN, it was increased significantly on the lesioned side in control and all time-dependent experimental groups. At striatum, it was increased significantly in post lesion 3-day group only(p <0.05). Compared to control group, immunoreactivity of OX-42 on lesioned side was increased in groups, except post lesion 21-day group, at SN. Only post lesion 3-day group showed significance at striatum(p <0.05). Compared to SN region, immunoreactivity of OX-42 was much weaker in striatum. 3) Microscopically, the microglias showed typically different activation pattern. At SN, numerous phagocytic microglias were found at pars compacta and reticularis of lesion side. At striatum, no phagocytic form was found and the intensity of staining was much weaker. 4) At SN, the immunoreactivity of osteopontin showed definite laterality and it was markedly increased at pars compacta of lesion side with relatively short duration time. At striatum, however, it was not detected by in situ hybridization technique. Conclusion : The nigral 6-OHDA induced rat model of Parkinson's disease revealed several characteristic patterns of microglial reaction. At SN, microglias was activated shortly after direct neuronal damage and maintained for about three weeks. In contrast, despite of sufficient dopaminergic insufficiency at striatum, activation of microglias was trivial, and distinguished 3 day later. Antegrade slow neuronal degeneration is major pathophysiology in striatal dopaminergic deficiency. So, the acuteness of neuronal damage and consequential degree of neuronal degeneration may be important factor for microglial activation in neurodegenerative diseases such as Parkinson's disease. Additionally, osteopontin may be a possible marker for several subsets of activated microglia, possibly the phagocytic form.

  • PDF

MiR-126-3p inhibits apoptosis and promotes proliferation by targeting phosphatidylinositol 3-kinase regulatory subunit 2 in porcine ovarian granulosa cells

  • Zhou, Xiaofeng;He, Yingting;Jiang, Yao;He, Bo;Deng, Xi;Zhang, Zhe;Yuan, Xiaolong;Li, Jiaqi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.879-887
    • /
    • 2020
  • Objective: Numerous studies have indicated that the apoptosis and proliferation of granulosa cells (GCs) are closely related to the normal growth and development of follicles and ovaries. Previous evidence has suggested that miR-126-3p might get involved in the apoptosis and proliferation of GCs, and phosphatidylinositol 3-kinase regulatory subunit 2 (PIK3R2) gene has been predicted as one target of miR-126-3p. However, the molecular regulation of miR-126-3p on PIK3R2 and the effects of PIK3R2 on porcine GCs apoptosis and proliferation remain virtually unexplored. Methods: In this study, using porcine GCs as a cellular model, luciferase report assay, mutation and deletion were applied to verify the targeting relationship between miR-126-3p and PIK3R2. Annexin-V/PI staining and 5-ethynyl-2'-deoxyuridine assay were applied to explore the effect of PIK3R2 on GCs apoptosis and proliferation, respectively. Real-time quantitative polymerase chain reaction and Western Blot were applied to explore the regulation of miR-126-3p on PIK3R2 expression. Results: We found that miR-126-3p targeted at PIK3R2 and inhibited its mRNA and protein expression. Knockdown of PIK3R2 significantly inhibited the apoptosis and promoted the proliferation of porcine GCs, and significantly down-regulated the mRNA expression of several key genes of PI3K pathway such as insulin-like growth factor 1 receptor (IGF1R), insulin receptor (INSR), pyruvate dehydrogenase kinase 1 (PDK1), and serine/threonine kinase 1 (AKT1). Conclusion: MiR-126-3p might target and inhibit the mRNA and protein expressions of PIK3R2, thereby inhibiting GC apoptosis and promoting GC proliferation by down-regulating several key genes of the PI3K pathway, IGF1R, INSR, PDK1, and AKT1. These findings would provide great insight into further exploring the molecular regulation of miR-126-3p and PIK3R2 on the functions of GCs during the folliculogenesis in female mammals.

Clinical implication of Dendritic Cell Infiltration in Cervical Tuberculous Lymphadenitis (결핵성 경부 림프절염에서 수지상돌기세포의 침윤과 임상양상의 연관성)

  • Jung, Jae Woo;Lee, Young Woo;Choi, Jae Cheol;Yoo, Seung Min;Lee, Hwa Yeon;Lim, Seoung Young;Shin, Jong Wook;Kim, Jae Yoel;Park, In Whn;Kim, Mi Kyung;Choi, Byoung Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.5
    • /
    • pp.523-531
    • /
    • 2006
  • Background : Cervical tuberculous lymphadenopathy is a very common disease with a similar incidence to pulmonary tuberculosis. Dendritic cells play a role of initial antigen presentation of this illness. Nevertheless, the precise role of these antigen-presenting cells according to the clinical features in unclear. The aim of this study was to determine the clinical implication of dendritic cell infiltration in the cervical lymph nodes. Methods : A review of the clinical characteristics was carried out retrospectively based on the clinical records and radiography. Immunohistochemical staining was performed on the available histology specimens of 72 cases using the S-100b polyclonal antibody for dendritic cells. The number of dendritic cells with tuberculous granuloma were determined. A $X^2$ test, unpaired T test and multiple logistic regression analysis were performed. Results : Thirty percent of subjects had previous or concurrent pulmonary TB. Twenty one percent of cases showed a positive reaction on the AFB stain. Within a granuloma, the number of infiltrated dendritic cells was $113.0{\pm}7.0$. The incidence of fever and cough decreased with increasing infiltration of dendritic cells Multivariate regression analysis showed that the infiltration of dendritic cells could significantly contribute to fever. Conclusion : Overall, dendritic cells can control a Mycobacterium tuberculosis infection and modulate the immune response, as well as resolve the clinical manifestations of TB lymphadenopathy.

Sodium Salicylate(NaSaL) Induces Apoptosis of NCI-H1299 Lung Carcinoma Cells via Activation Caspase-3 Protease (NCI-H1299 폐암 세포주에서 Caspase-3 Protease 활성을 통한 Sodium Salicylate(NaSaL)의 세포고사)

  • Shim, Hyeok;Yang, Sei-Hoon;Bak, Sang-Myeon;Jeong, Eun-Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.5
    • /
    • pp.485-496
    • /
    • 2002
  • Background : Nonsteroidal anti-inflammatory drugs (NSAIDs) are useful in the chemoprevention of colon cancers. Continuous NSAID use results in a 40% to 50% reduction in the relative risk of colorectal cancer. The precise mechanism by which NSAIDs prevent and/or cause the regression of colorectal tumors is not known. Some investigators have reported that certain NSAIDs induce apoptosis and alter the expression of the cell cycle regulatory genes in some carcinoma cells when administered at a relatively high concentration. However, the possibility of NSAIDs application as chemopreventive agents in lung cancers remains to be elucidated. To address this question, the human lung cancer cell line NCI-H1299 was used to investigate whether or not NSAIDs might induce the apoptotic death of NCI-H1299 cells. Methods : A viability test was carried out using a MTT assay. Apoptosis was measured by flow cytometric analysis and unclear staining(DAPI). The talytic activity of the caspase family was measured by the fluirigenic cleavage of biosubstrates. To define the mechanical basis of apoptosis, western blot was performed to analyze the expression of the death substrates(PARP and ICAD). Results : NaSaL significantly decreased the viability of the NCI-H1299 cells, which was revealed as apoptosis characterized by an increase in the $subG_0/G_1$ population and unclear fragmentation. The catalytic activity of caspase-3 protease began to increase after 24 Hr and reached a peak 30 Hr after treatment with 10 mM NaSaL. In contrast, caspase-6, 8, and 9 proteases did not have a significantly altered enzymatic activity. Consistent with activation of caspase-3 protease, NaSaL induced the cleavage of the protease biosubstrate. Conclusion : NaSaL induces the apoptotic death of NCI-H1299 human lung cancer cells via the activation of caspase-3 protease.

Osteogenesis of Human Adipose Tissue Derived Mesenchymal Stem Cells (ATMSCs) Seeded in Bioceramic-Poly D,L-Lactic-co-Glycolic Acid (PLGA) Scaffold (Bioceramic-Poly D,L-Lactic-co-Glycolic Acid(PLGA) Scaffold에 접종한 인간지방조직-유래 중간엽 줄기세포의 골 형성)

  • Kang, Yu-Mi;Hong, Soon-Gab;Do, Byung-Rok;Kim, Hae-Kwon;Lee, Joon-Yeong
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.87-98
    • /
    • 2011
  • The present experiment was performed to evaluate the osteogenic differentiation of human adipose tissue derived mesenchymal stem cells (ATMSCs) seeded in bioceramic-poly D,L-latic-co-glycolic acid (PLGA) scaffold. Osteogenic differentiation of ATMSCs were induced using the osteogenic induction (OI) medium. ATMSCs were cultured with OI medium during 28 days in well plate. The proliferation of ATMSCs in OI medium group was significantly increased for 14 days of plate culture but slowed after 21 days. On the other hand, proliferation in the control group showed constant increase for 28 days of culturing. The alkaline phosphatase (ALP) activity of ATMSCs in OI medium group increased during the 21 days of culture but decreased on 28 days. However, in control group ALP activity of ATMSCs was continuously decreased as time goes. Nodule was observed at 21 days of culture in OI medium group and confirmed accumulation of calcium in cell by alizarin red staining. ATMSCs were seeded in PLGA scaffold or in Bioceramic-PLGA scaffold, and cultured with OI medium. ALP activity of ATMSCs by osteoblast differentiation in each scaffold increased on 21 days of culture and decreased rapidly on 28 days. ALP activity of ATMSCs was increased highly in Bioceramic-PLGA scaffold compared to PLGA scaffold on 21 days of culturing. SEM-EDS analysis demonstrated that calcium and phosphate content and Ca/P ratio in Bioceramic-PLGA scaffold increased higher than in PLGA scaffold. Biodegradability of scaffold at 56 days after implantation showed that Bioceramic-PLGA scaffold was more biodegradable than PLGA scaffold. The results demonstrated that the differentiation of ATMSCs to osteoblast were more effective in scaffold culture than well plate culture. Bioceramic increased cell adhesion rate on scaffold and ALP activity by osteoblast differentiation. Also, bioceramic was considered to increase the calcium and phosphate in scaffold when ATMSCs was mineralized by osteogenic differentiation. Bioceramic-PLGA scaffold enhanced the osteogenesis of seeded ATMSCs compared to PLGA scaffold.

STIMULATION OF OSTEOBLASTIC PHENOTYPES BY STRONTIUM IN PERIOSTEAL-DERIVED CELLS (골막기원세포에서 strontium에 의한 조골세포 표현형의 활성)

  • Kim, Shin-Won;Kim, Uk-Kyu;Park, Bong-Wook;Hah, Young-Sool;Cho, Hee-Young;Kim, Jung-Hwan;Kim, Deok-Ryong;Kim, Jong-Ryoul;Joo, Hyun-Ho;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.3
    • /
    • pp.199-206
    • /
    • 2010
  • This study investigated the effects of strontium on osteoblastic phenotypes of cultured human periostealderived cells. Periosteal tissues were harvested from mandible during surgical extraction of lower impacted third molar. Periosteal-derived cells were introduced into cell culture. After passage 3, the periostealderived cells were further cultured for 28 days in an osteogenic induction DMEM medium supplemented with fetal bovine serum, ascorbic acid 2-phosphate, dexamethasone and at a density of $3{\times}10^4$ cells/well in a 6-well plate. In this culture medium, strontium at different concentrations (1, 5, 10, and 100 ${\mu}g$/mL) was added. The medium was changed every 3 days during the incubation period. We examined the cellular proliferation, histochemical detection and biochemical measurements of alkaline phosphatase (ALP), the RT-PCR analysis for ALP and osteocalcin, and von Kossa staining and calcium contents in the periostealderived cells. Cell proliferation was not associated with the addition of strontium in periosteal-derived cells. The ALP activity in the periosteal-derived cells was higher in 5, 10, and 100 ${\mu}g$/ml strontium-treated cells than in untreated cells at day 14 of culture. Among the strontium-treated cells, the ALP activity was appreciably higher in 100 ${\mu}g$/ml strontium-treated cells than in 5 and 10 ${\mu}g$/ml strontium-treated cells. The levels of ALP and osteocalcin mRNA in the periosteal-derived cells was also higher in strontium-treated cells than in untreated cells at day 14 of culture. Their levels were increased in a dose-dependent manner. Von Kossa-positive mineralization nodules were strongly observed in the 1 ${\mu}g$/ml strontium-treated cells at day 21 and 28 of culture. The calcium content in the periosteal-derived cells was also higher in 1 ${\mu}g$/ml strontium-treated cells at day 28 of culture. These results suggest that low concentration of strontium stimulates the osteoblastic phenotypes of more differentiated periosteal-derived cells, whereas high concentration of strontium stimulates the osteoblastic phenotypes of less differentiated periosteal-derived cells. The effects of strontium on osteoblastic phenotypes of periosteal-derived cells appear to be associated with differentiation-extent.

The effect of alendronates administration duration on the healing of extraction socket in rats: pilot study (알렌드로네이트의 투여기간이 발치와의 치유에 미치는 영향: 예비실험)

  • Kim, Jee-Hwan;Hong, Jong-Hwan;Choi, Hyun-Min;Park, Young-Bum;Moon, Hong-Seok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.3
    • /
    • pp.175-182
    • /
    • 2013
  • Purpose: The purpose of this study was to investigate the effect of different administration duration of alendronate on initial wound healing and new bone formation of extraction socket in rats. Materials and methods: Fifteen male Sprague-Dawley rats (body weight 130-140 g, 4 weeks old, male) were divided into control group (no alendronate administration) and experimental group (alendronate administration). Experimental group was subdivided into 1 week administrated group, 2 week administrated group, 4 week administrated group and 6 week administrated group according to duration of administration. For the experimental groups, during the designated time period (at the time of extraction, 1 week before extraction, 3 week before extraction and 5 week before extraction) till 1 week after extraction, rats were subcutaneously injected with Alendronate at the dose of 1.0 mg/Kg three times a week. Each specimen from 6 week experimental group and control group were used for microarray analysis, and other specimens were used for histological analysis. The rate of new bone formation within the extraction site and bone loss activity was analyzed using TRAP staining. Statistical analysis was performed using Kruskal Wallis test. (${\alpha}=.05$) Results: After one week from the time of extraction, the rate of new bone formation within extraction site for the control group ($16.77%{\pm}1.36%$) compared to the 4 week experimental group ($14.99%{\pm}6.26%$) was lower. However, no statistically significant difference was found. Increase in the number of inactive lacuna (empty lacuna) and decrease in the number of TRAP positive cell were identified with increased duration of administration. There was no significant difference. Conclusion: The results of this study showed as the duration of Alendronate administration increased the rate of new bone formation decreased with loss of bone activity and reduced number of osteoclast.

Cellular Analysis and Measurement of Mucin in Sputum of Chronic Airway Disease (만성기도질환의 객담세포분석과 mucin의 측정)

  • Kim, Ki-Up;Kim, Yang-Ki;Shin, Chan-Young;Kim, Do-Jin;Uh, Soo-Taek;Kim, Yong-Hoon;Ko, Kwang-Ho;Park, Choon-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.1
    • /
    • pp.82-92
    • /
    • 2000
  • Background : In chronic airway disease, mucus secretion is increased, but extraction of mucin, which is the main component of mucus secretion, is a very complicated and limited in clinical use. Recently, monoclonal antibody for mucin was developed for possible clinical use. In this study, cellular analysis and quantification of respiratory mucin in sputum of patients with chronic airway diseases were performed. Method : Sputum was collected from patients with asthma(n=33), bronchiectasis(n=8) or chronic bronchitis (n=13) by spontaneous expectoration or by hypertonic saline induction. Collected sputums was treated by 0.1% dithiotreitol to dissociate the disulfide bond of the mucus and filtered through a nylon gauze. Total cell count, viability and differential count were measured. For detection of mucin, collected samples were treated with sodium dodecyl sulfate polyacrylamide gel electrophoresis and then with monoclonal antibody(HMO2), as the primary antibody, and PAS stain. The amount of mucin was measured with ELISA by HMO2. Correlation with clinical information, cellular analysis, and amount of measured mucin were analyzed. Results : Total cell counts of sputum were significantly increased in patients with bronchiectasis but viability remained the same. Eosinophils were significantly increased in patients with asthma, neutrophils in bronchiectasis chronic bronchitis, respectively (p<0.05). The results of Western blotting and PAS staining confirmed the presence of glycoproteins and matched? with mucin. The amounts of mucin measured by ELISA were not significantly different among the disease groups. Significant correlation was identified between the amount of mucin and viability(r=-0.482, p<0.05). Conclusion : Inflammatory cells in the sputum of those with chronic airway disease were different for each disease type. Measurement of mucin by ELISA via monoclonal antibodies may be a simple method for the evaluation of chronic airway disease.

  • PDF

Dynamin II Expression and Morphological Comparison of NIH3T3 and NIH3T3 (ras) Cells (NIH3T3와 NIH3T3(ras) 세포에서 Dynamin II 발현 및 형태적 비교)

  • Lee, Chul-Woo;Kim, Su-Gwan;Choi, Jeong-Yun;Choi, Baik-Dong;Bae, Chun-Sik;Jeong, Soon-Jeong;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • v.35 no.3
    • /
    • pp.121-128
    • /
    • 2005
  • It has been known that ras signaling transduction leads to cell proliferation and migration including various adaptor molecules. Dynamin protein has been implicated in the formation of nascent vesicles in both the endocytic and secretory pathways. Dynamin was classified into three isoforms: dynamin I is only expressed in neuronal tissue, dynamin II is expressed ubiquitously in all tissue but that of dynamin III is confined to testis. We have reported in previous study that Grb2, binding to ras, was associated with dynamin II in NIH3T3 cells. Therefore we have tried to identify the relative expression of dynamin II according to overexpressed ras protein in ras oncogene transfected cells (NIH3T3 (ras)). For the detection of differential expression of dynamin II, we have used immunofluorescent staining and western blot methods in NIH3T3 and NIH3T3 (ras) cells. Next we have described the morphological differences between NIH3T3 and NIH3T3 (ras) cells using SEM and TEM. From these experiments dynamin II was highly expressed in NIH3T3 (ras) cells. NIH3T3 cells was transformed to more spindle shape with many cell process by transfection of ras oncogene. Moreover dynamin II was more concentrated in endocytotic membrane of the NIH3T3 (ras) cells compared to that of NIH3T3 cells. The present results suggested that dynamin II may involve the intermediate messenger in Ras signaling transduction pathway.