• Title/Summary/Keyword: Cell signaling proteins

Search Result 512, Processing Time 0.028 seconds

ADAM and ADAMTS family proteins and their role in the colorectal cancer etiopathogenesis

  • Przemyslaw, Leszczynski;Boguslaw, Hendrich Andrzej;Elzbieta, Szmida;Malgorzata, Sasiadek Maria
    • BMB Reports
    • /
    • v.46 no.3
    • /
    • pp.139-150
    • /
    • 2013
  • The ADAM and ADAMTS families, also called adamalysins belong to an important group of extracellular matrix proteins. The ADAMs family belong to both the transmembrane and secreted proteins, while ADAMTS family only contains secreted forms. Adamalysins play an important role in the cell phenotype regulation via their activities in signaling pathways, cell adhesion and migration. The human proteome contains 21 ADAM, and 19 ADAMTS proteins, which are involved in extracellular matrix remodeling, shedding of various substrates such as: adhesion ligands, growth factors, their receptors and diverse cytokines. Recent studies provide evidence that adamalysins play a crucial role in colorectal cancer (CRC) etiopathogenesis. It seems possible that adamalysins might be used as CRC prediction markers or potential pharmaceutical targets.

Ahnak depletion accelerates liver regeneration by modulating the TGF-β/Smad signaling pathway

  • Yang, Insook;Son, Yeri;Shin, Jae Hoon;Kim, Il Yong;Seong, Je Kyung
    • BMB Reports
    • /
    • v.55 no.8
    • /
    • pp.401-406
    • /
    • 2022
  • Ahnak, a large protein first identified as an inhibitor of TGF-β signaling in human neuroblastoma, was recently shown to promote TGF-β in some cancers. The TGF-β signaling pathway regulates cell growth, various biological functions, and cancer growth and metastasis. In this study, we used Ahnak knockout (KO) mice that underwent a 70% partial hepatectomy (PH) to investigate the function of Ahnak in TGF-β signaling during liver regeneration. At the indicated time points after PH, we analyzed the mRNA and protein expression of the TGF -β/Smad signaling pathway and cell cycle-related factors, evaluated the cell cycle through proliferating cell nuclear antigen (PCNA) immunostaining, analyzed the mitotic index by hematoxylin and eosin staining. We also measured the ratio of liver tissue weight to body weight. Activation of TGF-β signaling was confirmed by analyzing the levels of phospho-Smad 2 and 3 in the liver at the indicated time points after PH and was lower in Ahnak KO mice than in WT mice. The expression levels of cyclin B1, D1, and E1; proteins in the Rb/E2F transcriptional pathway, which regulates the cell cycle; and the numbers of PCNA-positive cells were increased in Ahnak KO mice and showed tendencies opposite that of TGF-β expression. During postoperative regeneration, the liver weight to body weight ratio tended to increase faster in Ahnak KO mice. However, 7 days after PH, both groups of mice showed similar rates of regeneration, following which their active regeneration stopped. Analysis of hepatocytes undergoing mitosis showed that there were more mitotic cells in Ahnak KO mice, consistent with the weight ratio. Our findings suggest that Ahnak enhances TGF-β signaling during postoperative liver regeneration, resulting in cell cycle disruption; this highlights a novel role of Ahnak in liver regeneration. These results provide new insight into liver regeneration and potential treatment targets for liver diseases that require surgical treatment.

Proteomics approaches for the studies of bone metabolism

  • Lee, Ji-Hyun;Cho, Je-Yoel
    • BMB Reports
    • /
    • v.47 no.3
    • /
    • pp.141-148
    • /
    • 2014
  • Bone is an active tissue, in which bone formation by osteoblast is followed by bone resorption by osteoclasts, in a repeating cycle. Proteomics approaches may allow the detection of changes in cell signal transduction, and the regulatory mechanism of cell differentiation. LC-MS/MS-based quantitative methods can be used with labeling strategies, such as SILAC, iTRAQ, TMT and enzymatic labeling. When used in combination with specific protein enrichment strategies, quantitative proteomics methods can identify various signaling molecules and modulators, and their interacting proteins in bone metabolism, to elucidate biological functions for the newly identified proteins in the cellular context. In this article, we will briefly review recent major advances in the application of proteomics for bone biology, especially from the aspect of cellular signaling.

Genetic Screen for Genes Involved in Chk2 Signaling in Drosophila

  • Park, Suk-Young;Song, Young-Han
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.350-355
    • /
    • 2008
  • Chk2 is a well characterized protein kinase with key roles in the DNA damage response. Chk2 is activated by phosphorylation following DNA damage, and relays that signal to various substrate proteins to induce cell cycle arrest, DNA repair, and apoptosis. In order to identify novel components of the Chk2 signaling pathway in Drosophila, we screened 2,240 EP misexpression lines for dominant modifiers of an adult rough eye phenotype caused by Chk2 overexpression in postmitotic cells of the eye imaginal disc. The rough eye phenotype was suppressed by mutation of the ATM kinase, a well-described activator of Chk2. Twenty-five EP modifiers were identified (three enhancers and 22 suppressors), none of which correspond to previously known components of Chk2 signaling. Three EPs caused defects in G2 arrest after irradiation with incomplete penetrance when homozygous, and are likely directly involved in the response to DNA damage. Possible roles for these modifiers in the DNA damage response and Chk2 signaling are discussed.

Antitumor effects of valdecoxib on hypopharyngeal squamous carcinoma cells

  • Trang, Nguyen Thi Kieu;Yoo, Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.439-446
    • /
    • 2022
  • The antitumoral effects of valdecoxib (Val), an United States Food and Drug Administration-approved anti-inflammatory drug that was withdrawn due to the side effects of increased risk of cardiovascular adverse events, were investigated in hypopharyngeal squamous cell carcinoma cells by performing a cell viability assay, transwell assay, immunofluorescence imaging, and Western blotting. Val markedly inhibited cell viability with an IC50 of 67.3 µM after 48 h of treatment, and also downregulated cell cycle proteins such as Cdks and their regulatory cyclin units. Cell migration and invasion were severely suppressed by inhibiting integrin α4/FAK expression. In addition, Val activated the cell cycle checkpoint CHK2 in response to excessive DNA damage, which led to the activation of caspase-3/9 and induced caspase-dependent apoptosis. Furthermore, the signaling cascades of the PI3K/AKT/mTOR and mitogen-activated protein kinase pathways were significantly inhibited by Val treatment. Taken together, our results indicate that Val can be used for the treatment of hypopharyngeal squamous cell carcinoma.

TMEM39A and Human Diseases: A Brief Review

  • Tran, Quangdon;Park, Jisoo;Lee, Hyunji;Hong, Youngeun;Hong, Suntaek;Park, Sungjin;Park, Jongsun;Kim, Seon-Hwan
    • Toxicological Research
    • /
    • v.33 no.3
    • /
    • pp.205-209
    • /
    • 2017
  • Transmembrane Protein 39A (TMEM39A) is a member of TMEM family. The understanding about this protein is still limited. The earlier studies indicated that TMEM39A was a key mediator of autoimmune disease. TMEM39A seems to be involved in systemic lupus erythematosus and multiple sclerosis in numerous of populations. All of these works stop at insufficient information by using gene functioning methods such as: Genome-wide association studies (GWASs) and/or follow-up study. It is the fact that the less understood of TMEM39A actually is the attraction to the scientist in near future. In this review the current knowledge about TMEM39A and its possible roles in cell biology, physiology and pathology will be described.

Effects of Extracellular Matrix Protein-derived Signaling on the Maintenance of the Undifferentiated State of Spermatogonial Stem Cells from Porcine Neonatal Testis

  • Park, Min Hee;Park, Ji Eun;Kim, Min Seong;Lee, Kwon Young;Hwang, Jae Yeon;Yun, Jung Im;Choi, Jung Hoon;Lee, Eunsong;Lee, Seung Tae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1398-1406
    • /
    • 2016
  • In general, the seminiferous tubule basement membrane (STBM), comprising laminin, collagen IV, perlecan, and entactin, plays an important role in self-renewal and spermatogenesis of spermatogonial stem cells (SSCs) in the testis. However, among the diverse extracellular matrix (ECM) proteins constituting the STBM, the mechanism by which each regulates SSC fate has yet to be revealed. Accordingly, we investigated the effects of various ECM proteins on the maintenance of the undifferentiated state of SSCs in pigs. First, an extracellular signaling-free culture system was optimized, and alkaline phosphatase (AP) activity and transcriptional regulation of SSC-specific genes were analyzed in porcine SSCs (pSSCs) cultured for 1, 3, and 5 days on non-, laminin- and collagen IV-coated Petri dishes in the optimized culture system. The microenvironment consisting of glial cell-derived neurotrophic factor (GDNF)-supplemented mouse embryonic stem cell culture medium (mESCCM) (GDNF-mESCCM) demonstrated the highest efficiency in the maintenance of AP activity. Moreover, under the established extracellular signaling-free microenvironment, effective maintenance of AP activity and SSC-specific gene expression was detected in pSSCs experiencing laminin-derived signaling. From these results, we believe that laminin can serve as an extracellular niche factor required for the in vitro maintenance of undifferentiated pSSCs in the establishment of the pSSC culture system.

Rapamycin-Induced Abundance Changes in the Proteome of Budding Yeast

  • Shin, Chun-Shik;Chang, Yeon-Ji;Lee, Hun-Goo;Huh, Won-Ki
    • Genomics & Informatics
    • /
    • v.7 no.4
    • /
    • pp.203-207
    • /
    • 2009
  • The target of rapamycin (TOR) signaling pathway conserved from yeast to human plays critical roles in regulation of eukaryotic cell growth. It has been shown that TOR pathway is involved in several cellular processes, including ribosome biogenesis, nutrient response, autophagy and aging. However, due to the functional diversity of TOR pathway, we do not know yet some key effectors of the pathway. To find unknown effectors of TOR signaling pathway, we took advantage of a green fluorescent protein (GFP)-tagged collection of budding yeast Saccharomyces cerevisiae. We analyzed protein abundance changes by measuring the GFP fluorescence intensity of 4156 GFP-tagged yeast strains under inhibition of TOR pathway. Our proteomic analysis argues that 83 proteins are decreased whereas 32 proteins are increased by treatment of rapamycin, a specific inhibitor of TOR complex 1 (TORC1). We found that, among the 115 proteins that show significant changes in protein abundance under rapamycin treatment, 37 proteins also show expression changes in the mRNA levels by more than 2-fold under the same condition. We suggest that the 115 proteins indentified in this study may be directly or indirectly involved in TOR signaling and can serve as candidates for further investigation of the effectors of TOR pathway.

Regulation of a Novel Guanine Nucleotide Binding Protein Tissue Transglutaminase ($G{\alpha}_n$).

  • Im, Mie-Jae
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.95-101
    • /
    • 2001
  • Tissue transglutaminase (TGII, $G{\alpha}h$) belongs to a family of enzymes which catalyze post-translational modification of proteins by forming isopeptides via $Ca^{2+}$-dependent reaction. Although TGII-mediated formation of isopeptides has been implicated to play a role in a variety of cellular processes, the physiological function of TGII remains unclear. In addition to this Tease activity, TGII is a guanosine triphosphatase (GTPase) which binds and hydrolyzes GTP It is now well recognized that the GTPase action of TGII regulates a receptor-mediated transmembrane signaling, functioning as a signal transducer of the receptor. This TGII function signifies that TGII is a new class of GTP-binding regulatory protein (G-protein) that differs from "Classical" heterotrimeric G-proteins. Regulation of enzyme is an important biological process for maintaining cell integrity. This review summarizes the recent development in regulation of TGII that may help for the better understanding of this unique enzyme. Since activation and inactivation of GTPase of TGII are similar to the heterotrimeric G-proteins, the regulation of heterotrimeric G-protein in the transmembrane signaling is also discussed.

  • PDF

Ankyrin Repeat-Rich Membrane Spanning (ARMS)/Kidins220 Scaffold Protein Regulates Neuroblastoma Cell Proliferation through p21

  • Jung, Heekyung;Shin, Joo-Hyun;Park, Young-Seok;Chang, Mi-Sook
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.881-887
    • /
    • 2014
  • Cell proliferation is tightly controlled by the cell-cycle regulatory proteins, primarily by cyclins and cyclin-dependent kinases (CDKs) in the $G_1$ phase. The ankyrin repeat-rich membrane spanning (ARMS) scaffold protein, also known as kinase D-interacting substrate of 220 kDa (Kidins 220), has been previously identified as a prominent downstream target of neurotrophin and ephrin receptors. Many studies have reported that ARMS/Kidins220 acts as a major signaling platform in organizing the signaling complex to regulate various cellular responses in the nervous and vascular systems. However, the role of ARMS/Kidins220 in cell proliferation and cell-cycle progression has never been investigated. Here we report that knockdown of ARMS/Kidins220 inhibits mouse neuroblastoma cell proliferation by inducing slowdown of cell cycle in the $G_1$ phase. This effect is mediated by the upregulation of a CDK inhibitor p21, which causes the decrease in cyclin D1 and CDK4 protein levels and subsequent reduction of pRb hyperphosphorylation. Our results suggest a new role of ARMS/Kidins220 as a signaling platform to regulate tumor cell proliferation in response to the extracellular stimuli.