ADAM and ADAMTS family proteins and their role in the colorectal cancer etiopathogenesis |
Przemyslaw, Leszczynski
(Department of Genetics, Wroclaw Medical University)
Boguslaw, Hendrich Andrzej (Department of Biology and Medical Parasitology, Wroclaw Medical University) Elzbieta, Szmida (Department of Genetics, Wroclaw Medical University) Malgorzata, Sasiadek Maria (Department of Genetics, Wroclaw Medical University) |
1 | Wang, H., Wu, J., Meng, X., Ying, X., Zuo, Y., Liu, R., Pan, Z., Kang, T. and Huang, W. (2011) MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis 32, 1033-1042. DOI ScienceOn |
2 | Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., Mandelker, D., Leary, R. J., Ptak, J., Silliman, N., Szabo, S., Buckhaults, P., Farrell, C., Meeh, P., Markowitz, S. D., Willis, J., Dawson, D., Willson, J. K. V., Gazdar, A. F., Hartigan, J., Wu, L., Liu, C. S., Parmigiani, G., Park, B. H., Bachman, K. E., Papadopoulos, N., Vogelstein, B., Kinzler, K. W. and Velculescu, V. E. (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314, 268-274. DOI ScienceOn |
3 | Ashktorab, H., Schaffer, A. A., Daremipouran, M., Smoot, D. T., Lee, E. and Brim, H. (2010) Distinct genetic alterations in colorectal cancer. PLoS One 5, e8879. DOI ScienceOn |
4 | Ahlquist, T., Lind, G. E., Costa, V. L., Meling, G. I., Vatn, M., Hoff, G. S., Rognum, T. O., Skotheim, R. I., Thiis-Evensen, E. and Lothe, R. A. (2008) Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers. Mol. Cancer. 7, 94. DOI ScienceOn |
5 | Lind, G. E., Kleivi, K., Meling, G. I., Teixeira, M. R., Thiis-Evensen, E., Rognum, T. O. and Lothe, R. A. (2006) ADAMTS1, CRABP1, and NR3C1 identified as epigenetically deregulated genes in colorectal tumorigenesis. Cell. Oncol. 28, 259-272. |
6 | Zhang, C., Shao, Y., Zhang, W., Wu, Q., Yang, H., Zhong, Q., Zhang, J., Guan, M., Yu, B. and Wan, J. (2010) High-resolution melting analysis of ADAMTS9 methylation levels in gastric, colorectal, and pancreatic cancers. Cancer Genet. Cytogenet. 196, 38-44. DOI ScienceOn |
7 | Wang, D., Zhu, T., Zhang, F. B. and He, C. (2011) Expression of ADAMTS12 in colorectal cancer-associated stroma prevents cancer development and is a good prognostic indicator of colorectal cancer. Dig. Dis. Sci. 56, 3281-3287. DOI |
8 | Viloria, C. G., Obaya, A. J., Moncada-Pazos, A., Llamazares, M., Astudillo, A., Capella, G., Cal, S. and Lopez-Otin, C. (2009) Genetic inactivation of ADAMTS15 metalloprotease in human colorectal cancer. Cancer Res. 69, 4926-4934. DOI ScienceOn |
9 | Arribas, J., Bech-Serra, J. J. and Santiago-Josefat, B. (2006) ADAMs, cell migration and cancer. Cancer Metastasis Rev. 25, 57-68. DOI |
10 | Gomis-Ruth, F. X., Kress, L. F., Kellermann, J., Mayr, I., Lee, X., Huber, R. and Bode, W. (1994) Refined 2.0 A X-ray crystal structure of the snake venom zinc-endopeptidase adamalysin II. Primary and tertiary structure determination, refinement, molecular structure and comparison with astacin, collagenase and thermolysin. J. Mol. Biol. 239, 513-544. DOI ScienceOn |
11 | Iba, K., Albrechtsen, R., Gilpin, B., Frohlich, C., Loechel, F., Zolkiewska, A., Ishiguro, K., Kojima, T., Liu, W., Langford, J. K., Sanderson, R. D., Brakebusch, C., Fassler, R. and Wewer, U. M. (2000) The cysteine-rich domain of human ADAM 12 supports cell adhesion through syndecans and triggers signaling events that lead to beta 1 integrin-dependent cell spreading. J. Cell Biol. 149, 1143-1155. DOI |
12 | Gaultier, A., Cousin, H., Darribere, T. and Alfandari, D. (2002) ADAM13 disintegrin and cysteine-rich domains bind to the second heparin-binding domain of fibronectin. J. Biol. Chem. 277, 23336-23344. DOI ScienceOn |
13 | Lorenzen, I., Trad, A. and Grotzinger, J. (2011) Multimerisation of A disintegrin and metalloprotease protein-17 (ADAM17) is mediated by its EGF-like domain. Biochem. Biophys. Res. Commun. 415, 330-336. DOI ScienceOn |
14 | Kang, Q., Cao, Y. and Zolkiewska, A. (2000) Metalloprotease-disintegrin ADAM 12 binds to the SH3 domain of Src and activates Src tyrosine kinase in C2C12 cells. Biochem. J. 352(Pt 3), 883-892. DOI |
15 | Poghosyan, Z., Robbins, S. M., Houslay, M. D., Webster, A., Murphy, G. and Edwards, D. R. (2002) Phosphorylation-dependent interactions between ADAM15 cytoplasmic domain and Src family protein-tyrosine kinases. J. Biol. Chem. 277, 4999-5007. DOI ScienceOn |
16 | Killock, D. J. and Ivetic, A. (2010) The cytoplasmic domains of TNFalpha-converting enzyme (TACE/ADAM17) and L-selectin are regulated differently by p38 MAPK and PKC to promote ectodomain shedding. Biochem. J. 428, 293-304. DOI ScienceOn |
17 | de Groot, R., Bardhan, A., Ramroop, N., Lane, D. A. and Crawley, J. T. (2009) Essential role of the disintegrin-like domain in ADAMTS13 function. Blood 113, 5609-5616. |
18 | Jones, G. C. and Riley, G. P. (2005) ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis. Res. Ther. 7, 160-169. DOI ScienceOn |
19 | Kuno, K. and Matsushima, K. (1998) ADAMTS-1 protein anchors at the extracellular matrix through the thrombospondin type I motifs and its spacing region. J. Biol. Chem. 273, 13912-13917. DOI ScienceOn |
20 | Guo, N.-H., Krutzsch, H. C., Inman, J. K. and Roberts, D. D. (2012) Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res. 57, 1735-1742. |
21 | Somerville, R. P., Longpre, J. M., Jungers, K. A., Engle, J. M., Ross, M., Evanko, S., Wight, T. N., Leduc, R. and Apte, S. S. (2003) Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1. J. Biol. Chem. 278, 9503-9513. DOI ScienceOn |
22 | Porter, S., Clark, I. M., Kevorkian, L. and Edwards, D. R. (2005) The ADAMTS metalloproteinases. Biochem. J. 386, 15-27. DOI ScienceOn |
23 | Nardi, J. B., Martos, R., Walden, K. K. O., Lampe, D. J. and Robertson, H. M. (1999) Expression of lacunin, a large multidomain extracellular matrix protein, accompanies morphogenesis of epithelial monolayers in Manduca sexta. Insect. Biochem. Mol. Biol. 29, 883-897. DOI ScienceOn |
24 | Somerville, R. P., Longpre, J. M., Apel, E. D., Lewis, R. M., Wang, L. W., Sanes, J. R., Leduc, R. and Apte, S. S. (2004) ADAMTS7B, the full-length product of the ADAMTS7 gene, is a chondroitin sulfate proteoglycan containing a mucin domain. J. Biol. Chem. 279, 35159-35175. DOI ScienceOn |
25 | Cal, S., Obaya, A. J., Llamazares, M., Garabaya, C., Quesada, V. and Lopez-Otin, C. (2002) Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 283, 49-62. DOI ScienceOn |
26 | Zheng, X., Chung, D., Takayama, T. K., Majerus, E. M., Sadler, J. E. and Fujikawa, K. (2001) Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J. Biol. Chem. 276, 41059-41063. DOI ScienceOn |
27 | Bork, P. and Beckmann, G. (1993) The CUB domain. A widespread module in developmentally regulated proteins. J. Mol. Biol. 231, 539-545. DOI ScienceOn |
28 | Vazquez, F., Hastings, G., Ortega, M. A., Lane, T. F., Oikemus, S., Lombardo, M. and Iruela-Arispe, M. L. (1999) METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J. Biol. Chem. 274, 23349-23357. DOI |
29 | Primakoff, P. and Myles, D. G. (2000) The ADAM gene family - surface proteins with adhesion and protease activity. Trends Genet. 16, 83-87. DOI ScienceOn |
30 | Han, C., Choi, E., Park, I., Lee, B., Jin, S., Kim, D. H., Nishimura, H. and Cho, C. (2009) Comprehensive analysis of reproductive ADAMs: relationship of ADAM4 and ADAM6 with an ADAM complex required for fertilization in mice. Biol. Reprod. 80, 1001-1008. DOI ScienceOn |
31 | Kim, T., Oh, J., Woo, J. M., Choi, E., Im, S. H., Yoo, Y. J., Kim, D. H., Nishimura, H. and Cho, C. H. (2006) Expression and relationship of male reproductive ADAMS in mouse. Biol. Reprod. 74, 744-750. DOI ScienceOn |
32 | Grzmil, P., Kim, Y., Shamsadin, R., Neesen, J., Adham, I. M., Heinlein, U. A., Schwarzer, U. J. and Engel, W. (2001) Human cyritestin genes (CYRN1 and CYRN2) are non-functional. Biochem. J. 357, 551-556. DOI |
33 | McKie, N., Dallas, D. J., Edwards, T., Apperley, J. F., Russell, R. G. and Croucher, P. I. (1996) Cloning of a novel membrane-linked metalloproteinase from human myeloma cells. Biochem. J. 318(Pt 2), 459-462. DOI |
34 | Kim, E., Yamashita, M., Nakanishi, T., Park, K. E., Kimura, M., Kashiwabara, S. and Baba, T. (2006) Mouse sperm lacking ADAM1b/ADAM2 fertilin can fuse with the egg plasma membrane and effect fertilization. J. Biol. Chem. 281, 5634-5639. DOI |
35 | Kim, J., Kang, S. G., Kim, J. I., Park, J. H., Kim, S. K., Cho, D. J. and Kim, H. (2006) Implication of ADAM-8, -9, -10, -12, -15, -17, and ADAMTS-1 in implantational remodeling of a mouse uterus. Yonsei. Med. J. 47, 558-567. DOI ScienceOn |
36 | Zhou, H. M., Weskamp, G., Chesneau, V., Sahin, U., Vortkamp, A., Horiuchi, K., Chiusaroli, R., Hahn, R., Wilkes, D., Fisher, P., Baron, R., Manova, K., Basson, C. T., Hempstead, B. and Blobel, C. P. (2004) Essential role for ADAM19 in cardiovascular morphogenesis. Mol. Cell. Biol. 24, 96-104. DOI |
37 | Roghani, M., Becherer, J. D., Moss, M. L., Atherton, R. E., Erdjument-Bromage, H., Arribas, J., Blackburn, R. K., Weskamp, G., Tempst, P. and Blobel, C. P. (1999) Metalloprotease-disintegrin MDC9: Intracellular maturation and catalytic activity. J. Biol. Chem. 274, 3531-3540. DOI ScienceOn |
38 | Hotoda, N., Koike, H., Sasagawa, N. and Ishiura, S. (2002) A secreted form of human ADAM9 has an alpha-secretase activity for APP. Biochem. Biophys. Res. Commun. 293, 800-805. DOI ScienceOn |
39 | Peduto, L., Reuter, V. E., Shaffer, D. R., Scher, H. I. and Blobel, C. P. (2005) Critical function for ADAM9 in mouse prostate cancer. Cancer Res. 65, 9312-9319. DOI ScienceOn |
40 | Schwettmann, L. (2001) Cloning and Expression in Pichia pastoris of Metalloprotease Domain of ADAM 9 Catalytically Active against Fibronectin. Protein Expr. Purif. 21, 65-70. DOI ScienceOn |
41 | Chen, C. D., Podvin, S., Gillespie, E., Leeman, S. E. and Abraham, C. R. (2007) Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM 17. Proc. Natl. Acad. Sci. U.S.A. 104, 19796-19801. DOI ScienceOn |
42 | Wolfsberg, T. G., Primakoff, P., Myles, D. G. and White, J. M. (1995) ADAM, a novel family of membrane proteins containing A Disintegrin And Metalloprotease domain: multipotential functions in cell-cell and cell-matrix interactions. J. Cell Biol. 131, 275-278. DOI ScienceOn |
43 | Sahin, U., Weskamp, G., Kelly, K., Zhou, H. M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P. and Blobel, C. P. (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J. Cell Biol. 164, 769-779. DOI ScienceOn |
44 | Allinson, T. M., Parkin, E. T., Turner, A. J. and Hooper, N. M. (2003) ADAMs family members as amyloid precursor protein alpha-secretases. J. Neurosci. Res. 74, 342-352. DOI ScienceOn |
45 | Bland, C. E., Kimberly, P. and Rand, M. D. (2003) Notch-induced proteolysis and nuclear localization of the delta ligand. J. Biol. Chem. 278, 13607-13610. DOI ScienceOn |
46 | Hartmann, D., de Strooper, B., Serneels, L., Craessaerts, K., Herreman, A., Annaert, W., Umans, L., Lubke, T., Lena Illert, A., von Figura, K. and Saftig, P. (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum. Mol. Genet. 11, 2615-2624. DOI ScienceOn |
47 | Gilpin, B. J., Loechel, F., Mattei, M. G., Engvall, E., Albrechtsen, R. and Wewer, U. M. (1998) A novel, secreted form of human ADAM 12 (meltrin alpha) provokes myogenesis in vivo. J. Biol. Chem. 273, 157-166. DOI ScienceOn |
48 | Roy, R., Wewer, U. M., Zurakowski, D., Pories, S. E. and Moses, M. A. (2004) ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J. Biol. Chem. 279, 51323-51330. DOI ScienceOn |
49 | Kurisaki, T., Masuda, A., Sudo, K., Sakagami, J., Higashiyama, S., Matsuda, Y., Nagabukuro, A., Tsuji, A., Nabeshima, Y., Asano, M., Iwakura, Y. and Sehara-Fujisawa, A. (2003) Phenotypic analysis of Meltrin alpha (ADAM12)-deficient mice: Involvement of Meltrin alpha in adipo-genesis and myogenesis. Mol. Cell Biol. 23, 55-61. DOI ScienceOn |
50 | Yagami-Hiromasa, T., Sato, T., Kurisaki, T., Kamijo, K., Nabeshima, Y. and Fujisawa-Sehara, A. (1995) A metalloprotease-disintegrin participating in myoblast fusion. Nature 377, 652-656. DOI ScienceOn |
51 | Moghadaszadeh, B., Albrechtsen, R., Guo, L. T., Zaik, M., Kawaguchi, N., Borup, R. H., Kronqvist, P., Schroder, H. D., Davies, K. E., Voit, T., Nielsen, F. C., Engvall, E. and Wewer, U. M. (2003) Compensation for dystrophin-deficiency: ADAM12 overexpression in skeletal muscle results in increased alpha 7 integrin, utrophin and associated glycoproteins. Hum. Mol. Genet. 12, 2467-2479. DOI ScienceOn |
52 | Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart, M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J. and Cerretti, D. P. (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385, 729-733. DOI ScienceOn |
53 | Saftig, P. and Hartmann, D. (2005) ADAM10 A major membrane protein ectodomain sheddase involved in regulated intramembrane proteolysis; in The Adam Family of Proteases, pp. 85-121, Springer, Dordrecht, The Netherlands. |
54 | Peschon, J. J., Slack, J. L., Reddy, P., Stocking, K. L., Sunnarborg, S. W., Lee, D. C., Russell, W. E., Castner, B. J., Johnson, R. S., Fitzner, J. N., Boyce, R. W., Nelson, N., Kozlosky, C. J., Wolfson, M. F., Rauch, C. T., Cerretti, D. P., Paxton, R. J., March, C. J. and Black, R. A. (1998) An essential role for ectodomain shedding in mammalian development. Science 282, 1281-1284. DOI ScienceOn |
55 | Wang, Y., Herrera, A. H., Li, Y., Belani, K. K. and Walcheck, B. (2009) Regulation of mature ADAM17 by redox agents for L-selectin shedding. J. Immunol. 182, 2449-2457. DOI ScienceOn |
56 | Brocker, C. N., Vasiliou, V. and Nebert, D. W. (2009) Evolutionary divergence and functions of the ADAM and ADAMTS gene families. Hum. Genomics. 4, 43-55. DOI ScienceOn |
57 | Sagane, K., Ohya, Y., Hasegawa, Y. and Tanaka, I. (1998) Metalloproteinase-like, disintegrin-like, cysteine-rich proteins MDC2 and MDC3: novel human cellular disintegrins highly expressed in the brain. Biochem. J. 334(Pt 1), 93-98. DOI |
58 | Sagane, K., Yamazaki, K., Mizui, Y. and Tanaka, I. (1999) Cloning and chromosomal mapping of mouse ADAM11, ADAM22 and ADAM23. Gene 236, 79-86. DOI ScienceOn |
59 | Mitchell, K. J., Pinson, K. I., Kelly, O. G., Brennan, J., Zupicich, J., Scherz, P., Leighton, P. A., Goodrich, L. V., Lu, X., Avery, B. J., Tate, P., Dill, K., Pangilinan, E., Wakenight, P., Tessier-Lavigne, M. and Skarnes, W. C. (2001) Functional analysis of secreted and transmembrane proteins critical to mouse development. Nature Genetics 28, 241-249. DOI ScienceOn |
60 | Xu, R., Cai, J., Xu, T., Zhou, W., Ying, B., Deng, K., Zhao, S. and Li, C. (1999) Molecular cloning and mapping of a novel ADAM gene (ADAM29) to human chromosome 4. Genomics 62, 537-539. DOI ScienceOn |
61 | Cerretti, D. P., DuBose, R. F., Black, R. A. and Nelson, N. (1999) Isolation of two novel metalloproteinase- disintegrin (ADAM) cDNAs that show testis-specific gene expression. Biochem. Biophys. Res. Commun. 263, 810-815. DOI ScienceOn |
62 | Oppezzo, P., Vasconcelos, Y., Settegrana, C., Jeannel, D., Vuillier, F., Legarff-Tavernier, M., Kimura, E. Y., Bechet, S., Dumas, G., Brissard, M., Merle-Beral, H., Yamamoto, M., Dighiero, G., Davi, F. and French Cooperative Group on CLL (2005) The LPL/ADAM29 expression ratio is a novel prognosis indicator in chronic lymphocytic leukemia. Blood 106, 650-657. DOI ScienceOn |
63 | Wei, X., Moncada-Pazos, A., Cal, S., Soria-Valles, C., Gartner, J., Rudloff, U., Lin, J. C., Program, N. C. S., Rosenberg, S. A., Lopez-Otin, C. and Samuels, Y. (2011) Analysis of the disintegrin-metalloproteinases family reveals ADAM29 and ADAM7 are often mutated in melanoma. Hum. Mutat. 32, E2148-2175. DOI ScienceOn |
64 | Lee, N. V., Sato, M., Annis, D. S., Loo, J. A., Wu, L., Mosher, D. F. and Iruela-Arispe, M. L. (2006) ADAMTS1 mediates the release of antiangiogenic polypeptides from TSP1 and 2. EMBO J. 25, 5270-5283. DOI ScienceOn |
65 | Kuno, K., Kanada, N., Nakashima, E., Fujiki, F., Ichimura, F. and Matsushima, K. (1997) Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene. J. Biol. Chem. 272, 556-562. DOI ScienceOn |
66 | Rodriguez-Manzaneque, J. C., Westling, J., Thai, S. N., Luque, A., Knauper, V., Murphy, G., Sandy, J. D. and Iruela-Arispe, M. L. (2002) ADAMTS1 cleaves aggrecan at multiple sites and is differentially inhibited by metalloproteinase inhibitors. Biochem. Biophys. Res. Commun. 293, 501-508. DOI ScienceOn |
67 | Luque, A., Carpizo, D. R. and Iruela-Arispe, M. L. (2003) ADAMTS1/METH1 inhibits endothelial cell proliferation by direct binding and sequestration of VEGF165. J. Biol. Chem. 278, 23656-23665. DOI ScienceOn |
68 | Ricciardelli, C., Frewin, K. M., Tan Ide, A., Williams, E. D., Opeskin, K., Pritchard, M. A., Ingman, W. V. and Russell, D. L. (2011) The ADAMTS1 protease gene is required for mammary tumor growth and metastasis. Am. J. Pathol. 179, 3075-3085. DOI ScienceOn |
69 | Lu, X., Wang, Q., Hu, G., Van Poznak, C., Fleisher, M., Reiss, M., Massague, J. and Kang, Y. (2009) ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev. 23, 1882-1894. DOI ScienceOn |
70 | Blelloch, R., Anna-Arriola, S. S., Gao, D., Li, Y., Hodgkin, J. and Kimble, J. (1999) The gon-1 gene is required for gonadal morphogenesis in Caenorhabditis elegans. Dev. Biol. 216, 382-393. DOI ScienceOn |
71 | Jungers, K. A., Le Goff, C., Somerville, R. P. and Apte, S. S. (2005) Adamts9 is widely expressed during mouse embryo development. Gene Expr. Patterns. 5, 609-617. DOI ScienceOn |
72 | El Hour, M., Moncada-Pazos, A., Blacher, S., Masset, A., Cal, S., Berndt, S., Detilleux, J., Host, L., Obaya, A. J., Maillard, C., Foidart, J. M., Ectors, F., Noel, A. and Lopez-Otin, C. (2010) Higher sensitivity of Adamts12-deficient mice to tumor growth and angiogenesis. Oncogene 29, 3025-3032. DOI ScienceOn |
73 | Lo, P. H., Leung, A. C., Kwok, C. Y., Cheung, W. S., Ko, J. M., Yang, L. C., Law, S., Wang, L. D., Li, J., Stanbridge, E. J., Srivastava, G., Tang, J. C., Tsao, S. W. and Lung, M. L. (2007) Identification of a tumor suppressive critical region mapping to 3p14.2 in esophageal squamous cell carcinoma and studies of a candidate tumor suppressor gene, ADAMTS9. Oncogene 26, 148-157. DOI ScienceOn |
74 | Liu, C. J., Kong, W., Xu, K., Luan, Y., Ilalov, K., Sehgal, B., Yu, S., Howell, R. D. and Di Cesare, P. E. (2006) ADAMTS-12 associates with and degrades cartilage oligomeric matrix protein. J. Biol. Chem. 281, 15800-15808. DOI ScienceOn |
75 | Moncada-Pazos, A., Obaya, A. J., Fraga, M. F., Viloria, C. G., Capella, G., Gausachs, M., Esteller, M., Lopez-Otin, C. and Cal, S. (2009) The ADAMTS12 metalloprotease gene is epigenetically silenced in tumor cells and transcriptionally activated in the stroma during progression of colon cancer. J. Cell Sci. 122, 2906-2913. DOI ScienceOn |
76 | Cross, N. A., Chandrasekharan, S., Jokonya, N., Fowles, A., Hamdy, F. C., Buttle, D. J. and Eaton, C. L. (2005) The expression and regulation of ADAMTS-1, -4, -5, -9, and -15, and TIMP-3 by TGFbeta1 in prostate cells: relevance to the accumulation of versican. Prostate. 63, 269-275. DOI ScienceOn |
77 | Porter, S., Span, P. N., Sweep, F., Tjan-Heijnen, V. C. G., Pennington, C. J., Pedersen, T. X., Johnsen, M., Lund, L. R., Romer, J. and Edwards, D. R. (2006) ADAMTS8 and ADAMTS15 expression predicts survival in human breast carcinoma. Int. J. Cancer. 118, 1241-1247. DOI ScienceOn |
78 | Zeng, W., Corcoran, C., Collins-Racie, L. A., Lavallie, E. R., Morris, E. A. and Flannery, C. R. (2006) Glycosaminoglycan-binding properties and aggrecanase activities of truncated ADAMTSs: comparative analyses with ADAMTS-5, -9, -16 and -18. Biochim. Biophys. Acta. 1760, 517-524. DOI ScienceOn |
79 | Li, Z., Nardi, M. A., Li, Y. S., Zhang, W., Pan, R., Dang, S., Yee, H., Quartermain, D., Jonas, S. and Karpatkin, S. (2009) C-terminal ADAMTS-18 fragment induces oxidative platelet fragmentation, dissolves platelet aggregates, and protects against carotid artery occlusion and cerebral stroke. Blood 113, 6051-6060. DOI ScienceOn |
80 | Li, Z., Zhang, W., Shao, Y., Zhang, C., Wu, Q., Yang, H., Wan, X., Zhang, J., Guan, M., Wan, J. and Yu, B. (2010) High-resolution melting analysis of ADAMTS18 methylation levels in gastric, colorectal and pancreatic cancers. Med. Oncol. 27, 998-1004. DOI ScienceOn |
81 | Leufkens, A. M., Van Duijnhoven, F. J. B., Boshuizen, H. C., Siersema, P. D., Kunst, A. E., Mouw, T., Tjonneland, A., Olsen, A., Overvad, K., Boutron-Ruault, M.-C., Clavel-Chapelon, F., Morois, S., Krogh, V., Tumino, R., Panico, S., Polidoro, S., Palli, D., Kaaks, R., Teucher, B., Pischon, T., Trichopoulou, A., Orfanos, P., Goufa, I., Peeters, P. H. M., Skeie, G., Braaten, T., Rodriguez, L., Lujan-Barroso, L., Sanchez-Perez, M.-J., Navarro, C., Barricarte, A., Zackrisson, S., Almquist, M., Hallmans, G., Palmqvist, R., Tsilidis, K. K., Khaw, K.-T., Wareham, N., Gallo, V., Jenab, M., Riboli, E. and Bueno-de-Mesquita, H. B. (2012) Educational level and risk of colorectal cancer in EPIC with specific reference to tumor location. Int. J. Cancer 130, 622-630. DOI ScienceOn |
82 | Parkin, D. M., Bray, F., Ferlay, J. and Pisani, P. (2005) Global cancer statistics, 2002. CA. Cancer J. Clin. 55, 74-108. DOI ScienceOn |
83 | Gonzalez, C. A. and Riboli, E. (2010) Diet and cancer prevention: Contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur. J. Cancer. 46, 2555-2562. DOI ScienceOn |
84 | Mazzocca, A., Coppari, R., De Franco, R., Cho, J. Y., Libermann, T. A., Pinzani, M. and Toker, A. (2005) Secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res. 65, 4728-4738. DOI ScienceOn |
85 | Hirao, T., Nanba, D., Tanaka, M., Ishiguro, H., Kinugasa, Y., Doki, Y., Yano, M., Matsuura, N., Monden, M. and Higashiyama, S. (2006) Overexpression of ADAM9 enhances growth factor-mediated recycling of E-cadherin in human colon cancer cell line HT29 cells. Exp. Cell Res. 312, 331-339. |
86 | Wang, Y. Y., Ye, Z. Y., Li, L., Zhao, Z. S., Shao, Q. S. and Tao, H. Q. (2011) ADAM 10 is Associated With Gastric Cancer Progression and Prognosis of Patients. J. Surg. Oncol. 103, 116-123. DOI ScienceOn |
87 | Knosel, T., Emde, A., Schluns, K., Chen, Y., Jurchott, K., Krause, M., Dietel, M. and Petersen, I. (2005) Immunoprofiles of 11 biomarkers using tissue microarrays identify prognostic subgroups in colorectal cancer. Neoplasia. 7, 741-747. DOI |
88 | Le Naour, F., Andre, M., Greco, C., Billard, M., Sordat, B., Emile, J. F., Lanza, F., Boucheix, C. and Rubinstein, E. (2006) Profiling of the tetraspanin web of human colon cancer cells. Mol. Cell Proteomics. 5, 845-857. DOI ScienceOn |
89 | Gavert, N., Sheffer, M., Raveh, S., Spaderna, S., Shtutman, M., Brabletz, T., Barany, F., Paty, P., Notterman, D., Domany, E. and Ben-Zeev, A. (2007) Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis. Cancer Res. 67, 7703-7712. DOI ScienceOn |
90 | Lin, H. M., Chatterjee, A., Lin, Y. H., Anjomshoaa, A., Fukuzawa, R., McCall, J. L. and Reeve, A. E. (2007) Genome wide expression profiling identifies genes associated with colorectal liver metastasis. Oncol. Rep. 17, 1541-1549. |
91 | Kyula, J. N., Van Schaeybroeck, S., Doherty, J., Fenning, C. S., Longley, D. B. and Johnston, P. G. (2010) Chemotherapy-Induced Activation of ADAM-17: A Novel Mechanism of Drug Resistance in Colorectal Cancer. Clin. Cancer Res. 16, 3378-3389. DOI |
92 | Van Schaeybroeck, S., Kyula, J. N., Fenton, A., Fenning, C. S., Sasazuki, T., Shirasawa, S., Longley, D. B. and Johnston, P. G. (2011) Oncogenic Kras promotes chemotherapy-induced growth factor shedding via ADAM17. Cancer Res. 71, 1071-1080. DOI |
93 | Choi, J.-S., Kim, K.-H., Jeon, Y.-K., Kim, S.-H., Jang, S.-G., Ku, J.-L. and Park, J.-G. (2009) Promoter hyper-methylation of the ADAM23 gene in colorectal cancer cell lines and cancer tissues. Int. J. Cancer 124, 1258-1262. DOI ScienceOn |
94 | Kim, Y. H., Lee, H. C., Kim, S. Y., Yeom, Y. I., Ryu, K. J., Min, B. H., Kim, D. H., Son, H. J., Rhee, P. L., Kim, J. J., Rhee, J. C., Kim, H. C., Chun, H. K., Grady, W. M. and Kim, Y. S. (2011) Epigenomic analysis of aberrantly methylated genes in colorectal cancer identifies genes commonly affected by epigenetic alterations. Ann. Surg. Oncol. 18, 2338-2347. DOI |
95 | Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674. DOI ScienceOn |
96 | Sasiadek, M. M. and Karpinski, P. (2009) Genetic theory of cancer. Pol. Przegl. Chir. 81, 478-485. |
97 | Stocker, W., Grams, F., Baumann, U., Reinemer, P., Gomisruth, F. X., McKay, D. B. and Bode, W. (1995) The metzincins-topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. 4, 823-840. |
98 | Tallant, C., Marrero, A. and Gomis-Ruth, F. X. (2010) Matrix metalloproteinases: Fold and function of their catalytic domains. Biochim. Biophys. Acta-Mol. Basis Dis. 1803, 20-28. DOI ScienceOn |
99 | Ugalde, A. P., Ordonez, G. R., Quiros, P. M., Puente, X. S. and Lopez-Otin, C. (2010) Metalloproteases and the degradome. Methods. Mol. Biol. 622, 3-29. DOI ScienceOn |
100 | Kessenbrock, K., Plaks, V. and Werb, Z. (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52-67. DOI ScienceOn |
101 | Gross, J. and Lapiere, C. M. (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc. Natl. Acad. Sci. U.S.A. 48, 1014-1022. DOI ScienceOn |
102 | Kuno, K., Kanada, N., Nakashima, E., Fujiki, F., Ichimura, F. and Matsushima, K. (1997) Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene. J. Biol. Chem. 272, 556-562. DOI ScienceOn |
103 | Kaushal, G. P. and Shah, S. V. (2000) The new kids on the block: ADAMTSs, potentially multifunctional metalloproteinases of the ADAM family. J. Clin. Invest. 105, 1335-1337. DOI ScienceOn |
104 | Wagstaff, L., Kelwick, R., Decock, J. and Edwards, D. R. (2011) The roles of ADAMTS metalloproteinases in tumorigenesis and metastasis. Front Biosci. 16, 1861-1872. DOI |
105 | van Goor, H., Melenhorst, W. B., Turner, A. J. and Holgate, S. T. (2009) Adamalysins in biology and disease. J. Pathol. 219, 277-286. DOI ScienceOn |
106 | Rocks, N., Paulissen, G., El Hour, M., Quesada, F., Crahay, C., Gueders, M., Foidart, J. M., Noel, A. and Cataldo, D. (2008) Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie. 90, 369-379. DOI ScienceOn |
107 | Edwards, D. R., Handsley, M. M. and Pennington, C. J. (2008) The ADAM metalloproteinases. Mol. Aspects. Med. 29, 258-289. DOI ScienceOn |
108 | Kang, T. B., Zhao, Y. G., Pei, D. Q., Sucic, J. F. and Sang, Q. X. A. (2002) Intracellular activation of human adamalysin 19/disintegrin and metalloproteinase 19 by furin occurs via one of the two consecutive recognition sites. J. Biol. Chem. 277, 25583-25591. DOI ScienceOn |
109 | Brocker, C. N., Vasiliou, V. and Nebert, D. W. (2009) Evolutionary divergence and functions of the ADAM and ADAMTS gene families. Hum. Genomics. 4, 43-55. DOI ScienceOn |
110 | Stanton, H., Melrose, J., Little, C. B. and Fosang, A. J. (2011) Proteoglycan degradation by the ADAMTS family of proteinases. Biochim. Biophys. Acta-Mol. Basis. Dis. 1812, 1616-1629. DOI ScienceOn |
111 | Van Wart, H. E. and Birkedalhansen, H. (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. U.S.A. 87, 5578-5582. DOI ScienceOn |
112 | Tortorella, M. D., Arner, E. C., Hills, R., Gormley, J., Fok, K., Pegg, L., Munie, G. and Malfait, A. M. (2005) ADAMTS-4 (aggrecanase-1): N-Terminal activation mechanisms. Arch. Biochem. Biophys. 444, 34-44. DOI ScienceOn |
113 | Hall, T., Leone, J. W., Wiese, J. F., Griggs, D. W., Pegg, L. E., Pauley, A. M., Tomasselli, A. G. and Zack, M. D. (2009) Autoactivation of human ADAM8: a novel preprocessing step is required for catalytic activity. Biosci. Rep. 29, 217-228. DOI ScienceOn |
114 | Milla, M. E., Leesnitzer, M. A., Moss, M. L., Clay, W. C., Carter, H. L., Miller, A. B., Su, J. L., Lambert, M. H., Willard, D. H., Sheeley, D. M., Kost, T. A., Burkhart, W., Moyer, M., Blackburn, R. K., Pahel, G. L., Mitchell, J. L., Hoffmann, R. and Becherer, J. D. (1999) Specific sequence elements are required for the expression of functional tumor necrosis factor-alpha-converting enzyme (TACE). J. Biol. Chem. 274, 30563-30570. DOI |
115 | Bridges, L. C., Sheppard, D. and Bowditch, R. D. (2005) ADAM disintegrin-like domain recognition by the lymphocyte integrins alpha4beta1 and alpha4beta7. Biochem. J. 387, 101-108. DOI ScienceOn |