Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.3.176

ADAM and ADAMTS family proteins and their role in the colorectal cancer etiopathogenesis  

Przemyslaw, Leszczynski (Department of Genetics, Wroclaw Medical University)
Boguslaw, Hendrich Andrzej (Department of Biology and Medical Parasitology, Wroclaw Medical University)
Elzbieta, Szmida (Department of Genetics, Wroclaw Medical University)
Malgorzata, Sasiadek Maria (Department of Genetics, Wroclaw Medical University)
Publication Information
BMB Reports / v.46, no.3, 2013 , pp. 139-150 More about this Journal
Abstract
The ADAM and ADAMTS families, also called adamalysins belong to an important group of extracellular matrix proteins. The ADAMs family belong to both the transmembrane and secreted proteins, while ADAMTS family only contains secreted forms. Adamalysins play an important role in the cell phenotype regulation via their activities in signaling pathways, cell adhesion and migration. The human proteome contains 21 ADAM, and 19 ADAMTS proteins, which are involved in extracellular matrix remodeling, shedding of various substrates such as: adhesion ligands, growth factors, their receptors and diverse cytokines. Recent studies provide evidence that adamalysins play a crucial role in colorectal cancer (CRC) etiopathogenesis. It seems possible that adamalysins might be used as CRC prediction markers or potential pharmaceutical targets.
Keywords
ADAM; ADAMTS; Apoptosis; Cell proliferation; Colorectal cancer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wang, H., Wu, J., Meng, X., Ying, X., Zuo, Y., Liu, R., Pan, Z., Kang, T. and Huang, W. (2011) MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis 32, 1033-1042.   DOI   ScienceOn
2 Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., Mandelker, D., Leary, R. J., Ptak, J., Silliman, N., Szabo, S., Buckhaults, P., Farrell, C., Meeh, P., Markowitz, S. D., Willis, J., Dawson, D., Willson, J. K. V., Gazdar, A. F., Hartigan, J., Wu, L., Liu, C. S., Parmigiani, G., Park, B. H., Bachman, K. E., Papadopoulos, N., Vogelstein, B., Kinzler, K. W. and Velculescu, V. E. (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314, 268-274.   DOI   ScienceOn
3 Ashktorab, H., Schaffer, A. A., Daremipouran, M., Smoot, D. T., Lee, E. and Brim, H. (2010) Distinct genetic alterations in colorectal cancer. PLoS One 5, e8879.   DOI   ScienceOn
4 Ahlquist, T., Lind, G. E., Costa, V. L., Meling, G. I., Vatn, M., Hoff, G. S., Rognum, T. O., Skotheim, R. I., Thiis-Evensen, E. and Lothe, R. A. (2008) Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers. Mol. Cancer. 7, 94.   DOI   ScienceOn
5 Lind, G. E., Kleivi, K., Meling, G. I., Teixeira, M. R., Thiis-Evensen, E., Rognum, T. O. and Lothe, R. A. (2006) ADAMTS1, CRABP1, and NR3C1 identified as epigenetically deregulated genes in colorectal tumorigenesis. Cell. Oncol. 28, 259-272.
6 Zhang, C., Shao, Y., Zhang, W., Wu, Q., Yang, H., Zhong, Q., Zhang, J., Guan, M., Yu, B. and Wan, J. (2010) High-resolution melting analysis of ADAMTS9 methylation levels in gastric, colorectal, and pancreatic cancers. Cancer Genet. Cytogenet. 196, 38-44.   DOI   ScienceOn
7 Wang, D., Zhu, T., Zhang, F. B. and He, C. (2011) Expression of ADAMTS12 in colorectal cancer-associated stroma prevents cancer development and is a good prognostic indicator of colorectal cancer. Dig. Dis. Sci. 56, 3281-3287.   DOI
8 Viloria, C. G., Obaya, A. J., Moncada-Pazos, A., Llamazares, M., Astudillo, A., Capella, G., Cal, S. and Lopez-Otin, C. (2009) Genetic inactivation of ADAMTS15 metalloprotease in human colorectal cancer. Cancer Res. 69, 4926-4934.   DOI   ScienceOn
9 Arribas, J., Bech-Serra, J. J. and Santiago-Josefat, B. (2006) ADAMs, cell migration and cancer. Cancer Metastasis Rev. 25, 57-68.   DOI
10 Gomis-Ruth, F. X., Kress, L. F., Kellermann, J., Mayr, I., Lee, X., Huber, R. and Bode, W. (1994) Refined 2.0 A X-ray crystal structure of the snake venom zinc-endopeptidase adamalysin II. Primary and tertiary structure determination, refinement, molecular structure and comparison with astacin, collagenase and thermolysin. J. Mol. Biol. 239, 513-544.   DOI   ScienceOn
11 Iba, K., Albrechtsen, R., Gilpin, B., Frohlich, C., Loechel, F., Zolkiewska, A., Ishiguro, K., Kojima, T., Liu, W., Langford, J. K., Sanderson, R. D., Brakebusch, C., Fassler, R. and Wewer, U. M. (2000) The cysteine-rich domain of human ADAM 12 supports cell adhesion through syndecans and triggers signaling events that lead to beta 1 integrin-dependent cell spreading. J. Cell Biol. 149, 1143-1155.   DOI
12 Gaultier, A., Cousin, H., Darribere, T. and Alfandari, D. (2002) ADAM13 disintegrin and cysteine-rich domains bind to the second heparin-binding domain of fibronectin. J. Biol. Chem. 277, 23336-23344.   DOI   ScienceOn
13 Lorenzen, I., Trad, A. and Grotzinger, J. (2011) Multimerisation of A disintegrin and metalloprotease protein-17 (ADAM17) is mediated by its EGF-like domain. Biochem. Biophys. Res. Commun. 415, 330-336.   DOI   ScienceOn
14 Kang, Q., Cao, Y. and Zolkiewska, A. (2000) Metalloprotease-disintegrin ADAM 12 binds to the SH3 domain of Src and activates Src tyrosine kinase in C2C12 cells. Biochem. J. 352(Pt 3), 883-892.   DOI
15 Poghosyan, Z., Robbins, S. M., Houslay, M. D., Webster, A., Murphy, G. and Edwards, D. R. (2002) Phosphorylation-dependent interactions between ADAM15 cytoplasmic domain and Src family protein-tyrosine kinases. J. Biol. Chem. 277, 4999-5007.   DOI   ScienceOn
16 Killock, D. J. and Ivetic, A. (2010) The cytoplasmic domains of TNFalpha-converting enzyme (TACE/ADAM17) and L-selectin are regulated differently by p38 MAPK and PKC to promote ectodomain shedding. Biochem. J. 428, 293-304.   DOI   ScienceOn
17 de Groot, R., Bardhan, A., Ramroop, N., Lane, D. A. and Crawley, J. T. (2009) Essential role of the disintegrin-like domain in ADAMTS13 function. Blood 113, 5609-5616.
18 Jones, G. C. and Riley, G. P. (2005) ADAMTS proteinases: a multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis. Res. Ther. 7, 160-169.   DOI   ScienceOn
19 Kuno, K. and Matsushima, K. (1998) ADAMTS-1 protein anchors at the extracellular matrix through the thrombospondin type I motifs and its spacing region. J. Biol. Chem. 273, 13912-13917.   DOI   ScienceOn
20 Guo, N.-H., Krutzsch, H. C., Inman, J. K. and Roberts, D. D. (2012) Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res. 57, 1735-1742.
21 Somerville, R. P., Longpre, J. M., Jungers, K. A., Engle, J. M., Ross, M., Evanko, S., Wight, T. N., Leduc, R. and Apte, S. S. (2003) Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1. J. Biol. Chem. 278, 9503-9513.   DOI   ScienceOn
22 Porter, S., Clark, I. M., Kevorkian, L. and Edwards, D. R. (2005) The ADAMTS metalloproteinases. Biochem. J. 386, 15-27.   DOI   ScienceOn
23 Nardi, J. B., Martos, R., Walden, K. K. O., Lampe, D. J. and Robertson, H. M. (1999) Expression of lacunin, a large multidomain extracellular matrix protein, accompanies morphogenesis of epithelial monolayers in Manduca sexta. Insect. Biochem. Mol. Biol. 29, 883-897.   DOI   ScienceOn
24 Somerville, R. P., Longpre, J. M., Apel, E. D., Lewis, R. M., Wang, L. W., Sanes, J. R., Leduc, R. and Apte, S. S. (2004) ADAMTS7B, the full-length product of the ADAMTS7 gene, is a chondroitin sulfate proteoglycan containing a mucin domain. J. Biol. Chem. 279, 35159-35175.   DOI   ScienceOn
25 Cal, S., Obaya, A. J., Llamazares, M., Garabaya, C., Quesada, V. and Lopez-Otin, C. (2002) Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 283, 49-62.   DOI   ScienceOn
26 Zheng, X., Chung, D., Takayama, T. K., Majerus, E. M., Sadler, J. E. and Fujikawa, K. (2001) Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J. Biol. Chem. 276, 41059-41063.   DOI   ScienceOn
27 Bork, P. and Beckmann, G. (1993) The CUB domain. A widespread module in developmentally regulated proteins. J. Mol. Biol. 231, 539-545.   DOI   ScienceOn
28 Vazquez, F., Hastings, G., Ortega, M. A., Lane, T. F., Oikemus, S., Lombardo, M. and Iruela-Arispe, M. L. (1999) METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J. Biol. Chem. 274, 23349-23357.   DOI
29 Primakoff, P. and Myles, D. G. (2000) The ADAM gene family - surface proteins with adhesion and protease activity. Trends Genet. 16, 83-87.   DOI   ScienceOn
30 Han, C., Choi, E., Park, I., Lee, B., Jin, S., Kim, D. H., Nishimura, H. and Cho, C. (2009) Comprehensive analysis of reproductive ADAMs: relationship of ADAM4 and ADAM6 with an ADAM complex required for fertilization in mice. Biol. Reprod. 80, 1001-1008.   DOI   ScienceOn
31 Kim, T., Oh, J., Woo, J. M., Choi, E., Im, S. H., Yoo, Y. J., Kim, D. H., Nishimura, H. and Cho, C. H. (2006) Expression and relationship of male reproductive ADAMS in mouse. Biol. Reprod. 74, 744-750.   DOI   ScienceOn
32 Grzmil, P., Kim, Y., Shamsadin, R., Neesen, J., Adham, I. M., Heinlein, U. A., Schwarzer, U. J. and Engel, W. (2001) Human cyritestin genes (CYRN1 and CYRN2) are non-functional. Biochem. J. 357, 551-556.   DOI
33 McKie, N., Dallas, D. J., Edwards, T., Apperley, J. F., Russell, R. G. and Croucher, P. I. (1996) Cloning of a novel membrane-linked metalloproteinase from human myeloma cells. Biochem. J. 318(Pt 2), 459-462.   DOI
34 Kim, E., Yamashita, M., Nakanishi, T., Park, K. E., Kimura, M., Kashiwabara, S. and Baba, T. (2006) Mouse sperm lacking ADAM1b/ADAM2 fertilin can fuse with the egg plasma membrane and effect fertilization. J. Biol. Chem. 281, 5634-5639.   DOI
35 Kim, J., Kang, S. G., Kim, J. I., Park, J. H., Kim, S. K., Cho, D. J. and Kim, H. (2006) Implication of ADAM-8, -9, -10, -12, -15, -17, and ADAMTS-1 in implantational remodeling of a mouse uterus. Yonsei. Med. J. 47, 558-567.   DOI   ScienceOn
36 Zhou, H. M., Weskamp, G., Chesneau, V., Sahin, U., Vortkamp, A., Horiuchi, K., Chiusaroli, R., Hahn, R., Wilkes, D., Fisher, P., Baron, R., Manova, K., Basson, C. T., Hempstead, B. and Blobel, C. P. (2004) Essential role for ADAM19 in cardiovascular morphogenesis. Mol. Cell. Biol. 24, 96-104.   DOI
37 Roghani, M., Becherer, J. D., Moss, M. L., Atherton, R. E., Erdjument-Bromage, H., Arribas, J., Blackburn, R. K., Weskamp, G., Tempst, P. and Blobel, C. P. (1999) Metalloprotease-disintegrin MDC9: Intracellular maturation and catalytic activity. J. Biol. Chem. 274, 3531-3540.   DOI   ScienceOn
38 Hotoda, N., Koike, H., Sasagawa, N. and Ishiura, S. (2002) A secreted form of human ADAM9 has an alpha-secretase activity for APP. Biochem. Biophys. Res. Commun. 293, 800-805.   DOI   ScienceOn
39 Peduto, L., Reuter, V. E., Shaffer, D. R., Scher, H. I. and Blobel, C. P. (2005) Critical function for ADAM9 in mouse prostate cancer. Cancer Res. 65, 9312-9319.   DOI   ScienceOn
40 Schwettmann, L. (2001) Cloning and Expression in Pichia pastoris of Metalloprotease Domain of ADAM 9 Catalytically Active against Fibronectin. Protein Expr. Purif. 21, 65-70.   DOI   ScienceOn
41 Chen, C. D., Podvin, S., Gillespie, E., Leeman, S. E. and Abraham, C. R. (2007) Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM 17. Proc. Natl. Acad. Sci. U.S.A. 104, 19796-19801.   DOI   ScienceOn
42 Wolfsberg, T. G., Primakoff, P., Myles, D. G. and White, J. M. (1995) ADAM, a novel family of membrane proteins containing A Disintegrin And Metalloprotease domain: multipotential functions in cell-cell and cell-matrix interactions. J. Cell Biol. 131, 275-278.   DOI   ScienceOn
43 Sahin, U., Weskamp, G., Kelly, K., Zhou, H. M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P. and Blobel, C. P. (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J. Cell Biol. 164, 769-779.   DOI   ScienceOn
44 Allinson, T. M., Parkin, E. T., Turner, A. J. and Hooper, N. M. (2003) ADAMs family members as amyloid precursor protein alpha-secretases. J. Neurosci. Res. 74, 342-352.   DOI   ScienceOn
45 Bland, C. E., Kimberly, P. and Rand, M. D. (2003) Notch-induced proteolysis and nuclear localization of the delta ligand. J. Biol. Chem. 278, 13607-13610.   DOI   ScienceOn
46 Hartmann, D., de Strooper, B., Serneels, L., Craessaerts, K., Herreman, A., Annaert, W., Umans, L., Lubke, T., Lena Illert, A., von Figura, K. and Saftig, P. (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum. Mol. Genet. 11, 2615-2624.   DOI   ScienceOn
47 Gilpin, B. J., Loechel, F., Mattei, M. G., Engvall, E., Albrechtsen, R. and Wewer, U. M. (1998) A novel, secreted form of human ADAM 12 (meltrin alpha) provokes myogenesis in vivo. J. Biol. Chem. 273, 157-166.   DOI   ScienceOn
48 Roy, R., Wewer, U. M., Zurakowski, D., Pories, S. E. and Moses, M. A. (2004) ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J. Biol. Chem. 279, 51323-51330.   DOI   ScienceOn
49 Kurisaki, T., Masuda, A., Sudo, K., Sakagami, J., Higashiyama, S., Matsuda, Y., Nagabukuro, A., Tsuji, A., Nabeshima, Y., Asano, M., Iwakura, Y. and Sehara-Fujisawa, A. (2003) Phenotypic analysis of Meltrin alpha (ADAM12)-deficient mice: Involvement of Meltrin alpha in adipo-genesis and myogenesis. Mol. Cell Biol. 23, 55-61.   DOI   ScienceOn
50 Yagami-Hiromasa, T., Sato, T., Kurisaki, T., Kamijo, K., Nabeshima, Y. and Fujisawa-Sehara, A. (1995) A metalloprotease-disintegrin participating in myoblast fusion. Nature 377, 652-656.   DOI   ScienceOn
51 Moghadaszadeh, B., Albrechtsen, R., Guo, L. T., Zaik, M., Kawaguchi, N., Borup, R. H., Kronqvist, P., Schroder, H. D., Davies, K. E., Voit, T., Nielsen, F. C., Engvall, E. and Wewer, U. M. (2003) Compensation for dystrophin-deficiency: ADAM12 overexpression in skeletal muscle results in increased alpha 7 integrin, utrophin and associated glycoproteins. Hum. Mol. Genet. 12, 2467-2479.   DOI   ScienceOn
52 Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart, M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J. and Cerretti, D. P. (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385, 729-733.   DOI   ScienceOn
53 Saftig, P. and Hartmann, D. (2005) ADAM10 A major membrane protein ectodomain sheddase involved in regulated intramembrane proteolysis; in The Adam Family of Proteases, pp. 85-121, Springer, Dordrecht, The Netherlands.
54 Peschon, J. J., Slack, J. L., Reddy, P., Stocking, K. L., Sunnarborg, S. W., Lee, D. C., Russell, W. E., Castner, B. J., Johnson, R. S., Fitzner, J. N., Boyce, R. W., Nelson, N., Kozlosky, C. J., Wolfson, M. F., Rauch, C. T., Cerretti, D. P., Paxton, R. J., March, C. J. and Black, R. A. (1998) An essential role for ectodomain shedding in mammalian development. Science 282, 1281-1284.   DOI   ScienceOn
55 Wang, Y., Herrera, A. H., Li, Y., Belani, K. K. and Walcheck, B. (2009) Regulation of mature ADAM17 by redox agents for L-selectin shedding. J. Immunol. 182, 2449-2457.   DOI   ScienceOn
56 Brocker, C. N., Vasiliou, V. and Nebert, D. W. (2009) Evolutionary divergence and functions of the ADAM and ADAMTS gene families. Hum. Genomics. 4, 43-55.   DOI   ScienceOn
57 Sagane, K., Ohya, Y., Hasegawa, Y. and Tanaka, I. (1998) Metalloproteinase-like, disintegrin-like, cysteine-rich proteins MDC2 and MDC3: novel human cellular disintegrins highly expressed in the brain. Biochem. J. 334(Pt 1), 93-98.   DOI
58 Sagane, K., Yamazaki, K., Mizui, Y. and Tanaka, I. (1999) Cloning and chromosomal mapping of mouse ADAM11, ADAM22 and ADAM23. Gene 236, 79-86.   DOI   ScienceOn
59 Mitchell, K. J., Pinson, K. I., Kelly, O. G., Brennan, J., Zupicich, J., Scherz, P., Leighton, P. A., Goodrich, L. V., Lu, X., Avery, B. J., Tate, P., Dill, K., Pangilinan, E., Wakenight, P., Tessier-Lavigne, M. and Skarnes, W. C. (2001) Functional analysis of secreted and transmembrane proteins critical to mouse development. Nature Genetics 28, 241-249.   DOI   ScienceOn
60 Xu, R., Cai, J., Xu, T., Zhou, W., Ying, B., Deng, K., Zhao, S. and Li, C. (1999) Molecular cloning and mapping of a novel ADAM gene (ADAM29) to human chromosome 4. Genomics 62, 537-539.   DOI   ScienceOn
61 Cerretti, D. P., DuBose, R. F., Black, R. A. and Nelson, N. (1999) Isolation of two novel metalloproteinase- disintegrin (ADAM) cDNAs that show testis-specific gene expression. Biochem. Biophys. Res. Commun. 263, 810-815.   DOI   ScienceOn
62 Oppezzo, P., Vasconcelos, Y., Settegrana, C., Jeannel, D., Vuillier, F., Legarff-Tavernier, M., Kimura, E. Y., Bechet, S., Dumas, G., Brissard, M., Merle-Beral, H., Yamamoto, M., Dighiero, G., Davi, F. and French Cooperative Group on CLL (2005) The LPL/ADAM29 expression ratio is a novel prognosis indicator in chronic lymphocytic leukemia. Blood 106, 650-657.   DOI   ScienceOn
63 Wei, X., Moncada-Pazos, A., Cal, S., Soria-Valles, C., Gartner, J., Rudloff, U., Lin, J. C., Program, N. C. S., Rosenberg, S. A., Lopez-Otin, C. and Samuels, Y. (2011) Analysis of the disintegrin-metalloproteinases family reveals ADAM29 and ADAM7 are often mutated in melanoma. Hum. Mutat. 32, E2148-2175.   DOI   ScienceOn
64 Lee, N. V., Sato, M., Annis, D. S., Loo, J. A., Wu, L., Mosher, D. F. and Iruela-Arispe, M. L. (2006) ADAMTS1 mediates the release of antiangiogenic polypeptides from TSP1 and 2. EMBO J. 25, 5270-5283.   DOI   ScienceOn
65 Kuno, K., Kanada, N., Nakashima, E., Fujiki, F., Ichimura, F. and Matsushima, K. (1997) Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene. J. Biol. Chem. 272, 556-562.   DOI   ScienceOn
66 Rodriguez-Manzaneque, J. C., Westling, J., Thai, S. N., Luque, A., Knauper, V., Murphy, G., Sandy, J. D. and Iruela-Arispe, M. L. (2002) ADAMTS1 cleaves aggrecan at multiple sites and is differentially inhibited by metalloproteinase inhibitors. Biochem. Biophys. Res. Commun. 293, 501-508.   DOI   ScienceOn
67 Luque, A., Carpizo, D. R. and Iruela-Arispe, M. L. (2003) ADAMTS1/METH1 inhibits endothelial cell proliferation by direct binding and sequestration of VEGF165. J. Biol. Chem. 278, 23656-23665.   DOI   ScienceOn
68 Ricciardelli, C., Frewin, K. M., Tan Ide, A., Williams, E. D., Opeskin, K., Pritchard, M. A., Ingman, W. V. and Russell, D. L. (2011) The ADAMTS1 protease gene is required for mammary tumor growth and metastasis. Am. J. Pathol. 179, 3075-3085.   DOI   ScienceOn
69 Lu, X., Wang, Q., Hu, G., Van Poznak, C., Fleisher, M., Reiss, M., Massague, J. and Kang, Y. (2009) ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev. 23, 1882-1894.   DOI   ScienceOn
70 Blelloch, R., Anna-Arriola, S. S., Gao, D., Li, Y., Hodgkin, J. and Kimble, J. (1999) The gon-1 gene is required for gonadal morphogenesis in Caenorhabditis elegans. Dev. Biol. 216, 382-393.   DOI   ScienceOn
71 Jungers, K. A., Le Goff, C., Somerville, R. P. and Apte, S. S. (2005) Adamts9 is widely expressed during mouse embryo development. Gene Expr. Patterns. 5, 609-617.   DOI   ScienceOn
72 El Hour, M., Moncada-Pazos, A., Blacher, S., Masset, A., Cal, S., Berndt, S., Detilleux, J., Host, L., Obaya, A. J., Maillard, C., Foidart, J. M., Ectors, F., Noel, A. and Lopez-Otin, C. (2010) Higher sensitivity of Adamts12-deficient mice to tumor growth and angiogenesis. Oncogene 29, 3025-3032.   DOI   ScienceOn
73 Lo, P. H., Leung, A. C., Kwok, C. Y., Cheung, W. S., Ko, J. M., Yang, L. C., Law, S., Wang, L. D., Li, J., Stanbridge, E. J., Srivastava, G., Tang, J. C., Tsao, S. W. and Lung, M. L. (2007) Identification of a tumor suppressive critical region mapping to 3p14.2 in esophageal squamous cell carcinoma and studies of a candidate tumor suppressor gene, ADAMTS9. Oncogene 26, 148-157.   DOI   ScienceOn
74 Liu, C. J., Kong, W., Xu, K., Luan, Y., Ilalov, K., Sehgal, B., Yu, S., Howell, R. D. and Di Cesare, P. E. (2006) ADAMTS-12 associates with and degrades cartilage oligomeric matrix protein. J. Biol. Chem. 281, 15800-15808.   DOI   ScienceOn
75 Moncada-Pazos, A., Obaya, A. J., Fraga, M. F., Viloria, C. G., Capella, G., Gausachs, M., Esteller, M., Lopez-Otin, C. and Cal, S. (2009) The ADAMTS12 metalloprotease gene is epigenetically silenced in tumor cells and transcriptionally activated in the stroma during progression of colon cancer. J. Cell Sci. 122, 2906-2913.   DOI   ScienceOn
76 Cross, N. A., Chandrasekharan, S., Jokonya, N., Fowles, A., Hamdy, F. C., Buttle, D. J. and Eaton, C. L. (2005) The expression and regulation of ADAMTS-1, -4, -5, -9, and -15, and TIMP-3 by TGFbeta1 in prostate cells: relevance to the accumulation of versican. Prostate. 63, 269-275.   DOI   ScienceOn
77 Porter, S., Span, P. N., Sweep, F., Tjan-Heijnen, V. C. G., Pennington, C. J., Pedersen, T. X., Johnsen, M., Lund, L. R., Romer, J. and Edwards, D. R. (2006) ADAMTS8 and ADAMTS15 expression predicts survival in human breast carcinoma. Int. J. Cancer. 118, 1241-1247.   DOI   ScienceOn
78 Zeng, W., Corcoran, C., Collins-Racie, L. A., Lavallie, E. R., Morris, E. A. and Flannery, C. R. (2006) Glycosaminoglycan-binding properties and aggrecanase activities of truncated ADAMTSs: comparative analyses with ADAMTS-5, -9, -16 and -18. Biochim. Biophys. Acta. 1760, 517-524.   DOI   ScienceOn
79 Li, Z., Nardi, M. A., Li, Y. S., Zhang, W., Pan, R., Dang, S., Yee, H., Quartermain, D., Jonas, S. and Karpatkin, S. (2009) C-terminal ADAMTS-18 fragment induces oxidative platelet fragmentation, dissolves platelet aggregates, and protects against carotid artery occlusion and cerebral stroke. Blood 113, 6051-6060.   DOI   ScienceOn
80 Li, Z., Zhang, W., Shao, Y., Zhang, C., Wu, Q., Yang, H., Wan, X., Zhang, J., Guan, M., Wan, J. and Yu, B. (2010) High-resolution melting analysis of ADAMTS18 methylation levels in gastric, colorectal and pancreatic cancers. Med. Oncol. 27, 998-1004.   DOI   ScienceOn
81 Leufkens, A. M., Van Duijnhoven, F. J. B., Boshuizen, H. C., Siersema, P. D., Kunst, A. E., Mouw, T., Tjonneland, A., Olsen, A., Overvad, K., Boutron-Ruault, M.-C., Clavel-Chapelon, F., Morois, S., Krogh, V., Tumino, R., Panico, S., Polidoro, S., Palli, D., Kaaks, R., Teucher, B., Pischon, T., Trichopoulou, A., Orfanos, P., Goufa, I., Peeters, P. H. M., Skeie, G., Braaten, T., Rodriguez, L., Lujan-Barroso, L., Sanchez-Perez, M.-J., Navarro, C., Barricarte, A., Zackrisson, S., Almquist, M., Hallmans, G., Palmqvist, R., Tsilidis, K. K., Khaw, K.-T., Wareham, N., Gallo, V., Jenab, M., Riboli, E. and Bueno-de-Mesquita, H. B. (2012) Educational level and risk of colorectal cancer in EPIC with specific reference to tumor location. Int. J. Cancer 130, 622-630.   DOI   ScienceOn
82 Parkin, D. M., Bray, F., Ferlay, J. and Pisani, P. (2005) Global cancer statistics, 2002. CA. Cancer J. Clin. 55, 74-108.   DOI   ScienceOn
83 Gonzalez, C. A. and Riboli, E. (2010) Diet and cancer prevention: Contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur. J. Cancer. 46, 2555-2562.   DOI   ScienceOn
84 Mazzocca, A., Coppari, R., De Franco, R., Cho, J. Y., Libermann, T. A., Pinzani, M. and Toker, A. (2005) Secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res. 65, 4728-4738.   DOI   ScienceOn
85 Hirao, T., Nanba, D., Tanaka, M., Ishiguro, H., Kinugasa, Y., Doki, Y., Yano, M., Matsuura, N., Monden, M. and Higashiyama, S. (2006) Overexpression of ADAM9 enhances growth factor-mediated recycling of E-cadherin in human colon cancer cell line HT29 cells. Exp. Cell Res. 312, 331-339.
86 Wang, Y. Y., Ye, Z. Y., Li, L., Zhao, Z. S., Shao, Q. S. and Tao, H. Q. (2011) ADAM 10 is Associated With Gastric Cancer Progression and Prognosis of Patients. J. Surg. Oncol. 103, 116-123.   DOI   ScienceOn
87 Knosel, T., Emde, A., Schluns, K., Chen, Y., Jurchott, K., Krause, M., Dietel, M. and Petersen, I. (2005) Immunoprofiles of 11 biomarkers using tissue microarrays identify prognostic subgroups in colorectal cancer. Neoplasia. 7, 741-747.   DOI
88 Le Naour, F., Andre, M., Greco, C., Billard, M., Sordat, B., Emile, J. F., Lanza, F., Boucheix, C. and Rubinstein, E. (2006) Profiling of the tetraspanin web of human colon cancer cells. Mol. Cell Proteomics. 5, 845-857.   DOI   ScienceOn
89 Gavert, N., Sheffer, M., Raveh, S., Spaderna, S., Shtutman, M., Brabletz, T., Barany, F., Paty, P., Notterman, D., Domany, E. and Ben-Zeev, A. (2007) Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis. Cancer Res. 67, 7703-7712.   DOI   ScienceOn
90 Lin, H. M., Chatterjee, A., Lin, Y. H., Anjomshoaa, A., Fukuzawa, R., McCall, J. L. and Reeve, A. E. (2007) Genome wide expression profiling identifies genes associated with colorectal liver metastasis. Oncol. Rep. 17, 1541-1549.
91 Kyula, J. N., Van Schaeybroeck, S., Doherty, J., Fenning, C. S., Longley, D. B. and Johnston, P. G. (2010) Chemotherapy-Induced Activation of ADAM-17: A Novel Mechanism of Drug Resistance in Colorectal Cancer. Clin. Cancer Res. 16, 3378-3389.   DOI
92 Van Schaeybroeck, S., Kyula, J. N., Fenton, A., Fenning, C. S., Sasazuki, T., Shirasawa, S., Longley, D. B. and Johnston, P. G. (2011) Oncogenic Kras promotes chemotherapy-induced growth factor shedding via ADAM17. Cancer Res. 71, 1071-1080.   DOI
93 Choi, J.-S., Kim, K.-H., Jeon, Y.-K., Kim, S.-H., Jang, S.-G., Ku, J.-L. and Park, J.-G. (2009) Promoter hyper-methylation of the ADAM23 gene in colorectal cancer cell lines and cancer tissues. Int. J. Cancer 124, 1258-1262.   DOI   ScienceOn
94 Kim, Y. H., Lee, H. C., Kim, S. Y., Yeom, Y. I., Ryu, K. J., Min, B. H., Kim, D. H., Son, H. J., Rhee, P. L., Kim, J. J., Rhee, J. C., Kim, H. C., Chun, H. K., Grady, W. M. and Kim, Y. S. (2011) Epigenomic analysis of aberrantly methylated genes in colorectal cancer identifies genes commonly affected by epigenetic alterations. Ann. Surg. Oncol. 18, 2338-2347.   DOI
95 Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674.   DOI   ScienceOn
96 Sasiadek, M. M. and Karpinski, P. (2009) Genetic theory of cancer. Pol. Przegl. Chir. 81, 478-485.
97 Stocker, W., Grams, F., Baumann, U., Reinemer, P., Gomisruth, F. X., McKay, D. B. and Bode, W. (1995) The metzincins-topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. 4, 823-840.
98 Tallant, C., Marrero, A. and Gomis-Ruth, F. X. (2010) Matrix metalloproteinases: Fold and function of their catalytic domains. Biochim. Biophys. Acta-Mol. Basis Dis. 1803, 20-28.   DOI   ScienceOn
99 Ugalde, A. P., Ordonez, G. R., Quiros, P. M., Puente, X. S. and Lopez-Otin, C. (2010) Metalloproteases and the degradome. Methods. Mol. Biol. 622, 3-29.   DOI   ScienceOn
100 Kessenbrock, K., Plaks, V. and Werb, Z. (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52-67.   DOI   ScienceOn
101 Gross, J. and Lapiere, C. M. (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc. Natl. Acad. Sci. U.S.A. 48, 1014-1022.   DOI   ScienceOn
102 Kuno, K., Kanada, N., Nakashima, E., Fujiki, F., Ichimura, F. and Matsushima, K. (1997) Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene. J. Biol. Chem. 272, 556-562.   DOI   ScienceOn
103 Kaushal, G. P. and Shah, S. V. (2000) The new kids on the block: ADAMTSs, potentially multifunctional metalloproteinases of the ADAM family. J. Clin. Invest. 105, 1335-1337.   DOI   ScienceOn
104 Wagstaff, L., Kelwick, R., Decock, J. and Edwards, D. R. (2011) The roles of ADAMTS metalloproteinases in tumorigenesis and metastasis. Front Biosci. 16, 1861-1872.   DOI
105 van Goor, H., Melenhorst, W. B., Turner, A. J. and Holgate, S. T. (2009) Adamalysins in biology and disease. J. Pathol. 219, 277-286.   DOI   ScienceOn
106 Rocks, N., Paulissen, G., El Hour, M., Quesada, F., Crahay, C., Gueders, M., Foidart, J. M., Noel, A. and Cataldo, D. (2008) Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie. 90, 369-379.   DOI   ScienceOn
107 Edwards, D. R., Handsley, M. M. and Pennington, C. J. (2008) The ADAM metalloproteinases. Mol. Aspects. Med. 29, 258-289.   DOI   ScienceOn
108 Kang, T. B., Zhao, Y. G., Pei, D. Q., Sucic, J. F. and Sang, Q. X. A. (2002) Intracellular activation of human adamalysin 19/disintegrin and metalloproteinase 19 by furin occurs via one of the two consecutive recognition sites. J. Biol. Chem. 277, 25583-25591.   DOI   ScienceOn
109 Brocker, C. N., Vasiliou, V. and Nebert, D. W. (2009) Evolutionary divergence and functions of the ADAM and ADAMTS gene families. Hum. Genomics. 4, 43-55.   DOI   ScienceOn
110 Stanton, H., Melrose, J., Little, C. B. and Fosang, A. J. (2011) Proteoglycan degradation by the ADAMTS family of proteinases. Biochim. Biophys. Acta-Mol. Basis. Dis. 1812, 1616-1629.   DOI   ScienceOn
111 Van Wart, H. E. and Birkedalhansen, H. (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl. Acad. Sci. U.S.A. 87, 5578-5582.   DOI   ScienceOn
112 Tortorella, M. D., Arner, E. C., Hills, R., Gormley, J., Fok, K., Pegg, L., Munie, G. and Malfait, A. M. (2005) ADAMTS-4 (aggrecanase-1): N-Terminal activation mechanisms. Arch. Biochem. Biophys. 444, 34-44.   DOI   ScienceOn
113 Hall, T., Leone, J. W., Wiese, J. F., Griggs, D. W., Pegg, L. E., Pauley, A. M., Tomasselli, A. G. and Zack, M. D. (2009) Autoactivation of human ADAM8: a novel preprocessing step is required for catalytic activity. Biosci. Rep. 29, 217-228.   DOI   ScienceOn
114 Milla, M. E., Leesnitzer, M. A., Moss, M. L., Clay, W. C., Carter, H. L., Miller, A. B., Su, J. L., Lambert, M. H., Willard, D. H., Sheeley, D. M., Kost, T. A., Burkhart, W., Moyer, M., Blackburn, R. K., Pahel, G. L., Mitchell, J. L., Hoffmann, R. and Becherer, J. D. (1999) Specific sequence elements are required for the expression of functional tumor necrosis factor-alpha-converting enzyme (TACE). J. Biol. Chem. 274, 30563-30570.   DOI
115 Bridges, L. C., Sheppard, D. and Bowditch, R. D. (2005) ADAM disintegrin-like domain recognition by the lymphocyte integrins alpha4beta1 and alpha4beta7. Biochem. J. 387, 101-108.   DOI   ScienceOn