Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.3.270

Proteomics approaches for the studies of bone metabolism  

Lee, Ji-Hyun (Department of Veterinary Biochemistry, BK21 and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University)
Cho, Je-Yoel (Department of Veterinary Biochemistry, BK21 and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University)
Publication Information
BMB Reports / v.47, no.3, 2014 , pp. 141-148 More about this Journal
Abstract
Bone is an active tissue, in which bone formation by osteoblast is followed by bone resorption by osteoclasts, in a repeating cycle. Proteomics approaches may allow the detection of changes in cell signal transduction, and the regulatory mechanism of cell differentiation. LC-MS/MS-based quantitative methods can be used with labeling strategies, such as SILAC, iTRAQ, TMT and enzymatic labeling. When used in combination with specific protein enrichment strategies, quantitative proteomics methods can identify various signaling molecules and modulators, and their interacting proteins in bone metabolism, to elucidate biological functions for the newly identified proteins in the cellular context. In this article, we will briefly review recent major advances in the application of proteomics for bone biology, especially from the aspect of cellular signaling.
Keywords
ECM; Growth factors; MSC; Osteoblast differentiation; Proteomics;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Chen, E. I. and Yates, J. R., 3rd (2007) Cancer proteomics by quantitative shotgun proteomics. Mol. Oncol. 1, 144-159.   DOI   ScienceOn
2 Ong, S. E., Foster, L. J. and Mann, M. (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods 29, 124-130.   DOI   ScienceOn
3 Shi, T., Su, D., Liu, T., Tang, K., Camp, D. G., 2nd, Qian, W. J. and Smith, R. D. (2012) Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics. Proteomics 12, 1074-1092.   DOI   ScienceOn
4 Honda, K., Ono, M., Shitashige, M., Masuda, M., Kamita, M., Miura, N. and Yamada, T. (2013) Proteomic approaches to the discovery of cancer biomarkers for early detection and personalized medicine. J. Clin. Oncol. 43, 103-109.
5 Cumova, J., Potacova, A., Zdrahal, Z. and Hajek, R. (2011) Proteomic analysis in multiple myeloma research. Mol. Biotechnol. 47, 83-93.   DOI
6 Chen, S., Zhao, H., Deng, J., Liao, P., Xu, Z. and Cheng, Y. (2013) Comparative proteomics of glioma stem cells and differentiated tumor cells identifies S100A9 as a potential therapeutic target. J. Cell Biochem. 114, 2795-2808.   DOI   ScienceOn
7 Blagoev, B., Kratchmarova, I., Ong, S. E., Nielsen, M., Foster, L. J. and Mann, M. (2003) A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat. Biotechnol. 21, 315-318.   DOI   ScienceOn
8 Oberg, A. L. and Mahoney, D. W. (2012) Statistical methods for quantitative mass spectrometry proteomic experiments with labeling. BMC Bioinformatics 13(Suppl 16), S7.
9 Ducy, P., Schinke, T. and Karsenty, G. (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289, 1501-1504.   DOI   ScienceOn
10 Katagiri, T. and Takahashi, N. (2002) Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral. Dis. 8, 147-159.   DOI   ScienceOn
11 Kim, J. M., Kim, J., Kim, Y. H., Kim, K. T., Ryu, S. H., Lee, T. G. and Suh, P. G. Comparative secretome analysis of human bone marrow-derived mesenchymal stem cells during osteogenesis. J. Cell Physiol. 228, 216-224.
12 Boyle, W. J., Simonet, W. S. and Lacey, D. L. (2003) Osteoclast differentiation and activation. Nature 423, 337-342.   DOI   ScienceOn
13 Caetano-Lopes, J., Canhao, H. and Fonseca, J. E. (2007) Osteoblasts and bone formation. Acta. Reumatol. Port. 32, 103-110.
14 Fakhry, M., Hamade, E., Badran, B., Buchet, R. and Magne, D. (2013) Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World. J. Stem. Cells. 5, 136-148.   DOI   ScienceOn
15 Friedenstein, A. J., Ivanov-Smolenski, A. A., Chajlakjan, R. K., Gorskaya, U. F., Kuralesova, A. I., Latzinik, N. W. and Gerasimow, U. W. (1978) Origin of bone marrow stromal mechanocytes in radiochimeras and heterotopic transplants. Exp. Hematol. 6, 440-444.
16 Salasznyk, R. M., Westcott, A. M., Klees, R. F., Ward, D. F., Xiang, Z., Vandenberg, S., Bennett, K. and Plopper, G. E. (2005) Comparing the protein expression profiles of human mesenchymal stem cells and human osteoblasts using gene ontologies. Stem. Cells Dev. 14, 354-366.   DOI   ScienceOn
17 Caplan, A. I. (1991) Mesenchymal stem cells. J. Orthop. Res. 9, 641-650.   DOI
18 Moussavou, G., Kwak, D. H., Lim, M. U., Kim, J. S., Kim, S. U., Chang, K. T. and Choo, Y. K. (2013) Role of gangliosides in the differentiation of human mesenchymal-derived stem cells into osteoblasts and neuronal cells. BMB Rep. 46, 527-532.   DOI   ScienceOn
19 Ding, J., Ghali, O., Lencel, P., Broux, O., Chauveau, C., Devedjian, J. C., Hardouin, P. and Magne, D. (2009) TNF-alpha and IL-1beta inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells. Life Sci. 84, 499-504.   DOI   ScienceOn
20 Kristensen, L. P., Chen, L., Nielsen, M. O., Qanie, D. W., Kratchmarova, I., Kassem, M. and Andersen, J. S. Temporal profiling and pulsed SILAC labeling identify novel secreted proteins during ex vivo osteoblast differentiation of human stromal stem cells. Mol. Cell Proteomics 11, 989-1007.
21 Lee, J. H., Kim, B. G., Ahn, J. M., Park, H. J., Park, S. K., Yoo, J. S., Yates, J. R., 3rd and Cho, J. Y. (2010) Role of PI3K on the regulation of BMP2-induced beta-Catenin activation in human bone marrow stem cells. Bone 46, 1522-1532.   DOI   ScienceOn
22 Tamaki, Y., Nakahara, T., Ishikawa, H. and Sato, S. (2013) In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow. Odontology 101, 121-132.   DOI   ScienceOn
23 Canalis, E., Economides, A. N. and Gazzerro, E. (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev. 24, 218-235.   DOI   ScienceOn
24 Patil, R., Kumar, B. M., Lee, W. J., Jeon, R. H., Jang, S. J., Lee, Y. M., Park, B. W., Byun, J. H., Ahn, C. S., Kim, J. W. and Rho, G. J. (2014) Multilineage potential and proteomic profiling of human dental stem cells derived from a single donor. Exp. Cell Res. 320, 92-107.   DOI   ScienceOn
25 Xu, D. J., Zhao, Y. Z., Wang, J., He, J. W., Weng, Y. G. and Luo, J. Y. (2012) Smads, p38 and ERK1/2 are involved in BMP9-induced osteogenic differentiation of C3H10T1/2 mesenchymal stem cells. BMB Rep. 45, 247-252.   DOI   ScienceOn
26 Chen, D., Zhao, M. and Mundy, G. R. (2004) Bone morphogenetic proteins. Growth Factors 22, 233-241.   DOI   ScienceOn
27 Li, X. and Cao, X. (2006) BMP signaling and skeletogenesis. Ann. N. Y. Acad. Sci. 1068, 26-40.   DOI   ScienceOn
28 Massague, J. (1998) TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753-791.   DOI   ScienceOn
29 Guicheux, J., Lemonnier, J., Ghayor, C., Suzuki, A., Palmer, G. and Caverzasio, J. (2003) Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J. Bone. Miner. Res. 18, 2060-2068.   DOI   ScienceOn
30 Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. and Karsenty, G. (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747-754.   DOI   ScienceOn
31 Komori, T. (2011) Signaling networks in RUNX2-dependent bone development. J. Cell Biochem. 112, 750-755.   DOI   ScienceOn
32 Kim, B. G., Lee, J. H., Yasuda, J., Ryoo, H. M. and Cho, J. Y. Phospho-Smad1 modulation by nedd4 E3 ligase in BMP/TGF-beta signaling. J. Bone. Miner. Res. 26, 1411-1424.
33 Cadigan, K. M. and Liu, Y. I. (2006) Wnt signaling: complexity at the surface. J. Cell Sci. 119, 395-402.   DOI   ScienceOn
34 Kim, B. G., Lee, J. H., Ahn, J. M., Park, S. K., Cho, J. H., Hwang, D., Yoo, J. S., Yates, J. R., 3rd, Ryoo, H. M. and Cho, J. Y. (2009) 'Two-stage double-technique hybrid (TSDTH)' identification strategy for the analysis of BMP2-induced transdifferentiation of premyoblast C2C12 cells to osteoblast. J. Proteome. Res. 8, 4441-4454.   DOI   ScienceOn
35 Fotia, A. B., Ekberg, J., Adams, D. J., Cook, D. I., Poronnik, P. and Kumar, S. (2004) Regulation of neuronal voltage-gated sodium channels by the ubiquitin-protein ligases Nedd4 and Nedd4-2. J. Biol. Chem. 279, 28930-28935.   DOI   ScienceOn
36 Pinzone, J. J., Hall, B. M., Thudi, N. K., Vonau, M., Qiang, Y. W., Rosol, T. J. and Shaughnessy, J. D., Jr. (2009) The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 113, 517-525.   DOI   ScienceOn
37 Day, T. F., Guo, X., Garrett-Beal, L. and Yang, Y. (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8, 739-750.   DOI   ScienceOn
38 Silverio, K. G., Davidson, K. C., James, R. G., Adams, A. M., Foster, B. L., Nociti, F. H., Jr., Somerman, M. J. and Moon, R. T. (2012) Wnt/beta-catenin pathway regulates bone morphogenetic protein (BMP2)-mediated differentiation of dental follicle cells. J. Periodontal. Res. 47, 309-319.   DOI   ScienceOn
39 Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M. T. and Martin, T. J. (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345-357.   DOI
40 Zhang, R., Oyajobi, B. O., Harris, S. E., Chen, D., Tsao, C., Deng, H. W. and Zhao, M. (2013) Wnt/beta-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone 52, 145-156.   DOI   ScienceOn
41 Krane, S. M. (2005) Identifying genes that regulate bone remodeling as potential therapeutic targets. J. Exp. Med. 201, 841-843.   DOI   ScienceOn
42 Takahashi, N., Udagawa, N. and Suda, T. (1999) A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun. 256, 449-455.   DOI   ScienceOn
43 Teitelbaum, S. L. (2000) Bone resorption by osteoclasts. Science 289, 1504-1508.   DOI   ScienceOn
44 Gori, F., Hofbauer, L. C., Dunstan, C. R., Spelsberg, T. C., Khosla, S. and Riggs, B. L. (2000) The expression of osteoprotegerin and RANK ligand and the support of osteoclast formation by stromal-osteoblast lineage cells is developmentally regulated. Endocrinology 141, 4768-4776.   DOI
45 Kim, H. H., Shin, H. S., Kwak, H. J., Ahn, K. Y., Kim, J. H., Lee, H. J., Lee, M. S., Lee, Z. H. and Koh, G. Y. (2003) RANKL regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. FASEB J. 17, 2163-2165.   DOI
46 Lamghari, M., Tavares, L., Camboa, N. and Barbosa, M. A. (2006) Leptin effect on RANKL and OPG expression in MC3T3-E1 osteoblasts. J. Cell. Biochem. 98, 1123-1129.   DOI   ScienceOn
47 Fantner, G. E., Birkedal, H., Kindt, J. H., Hassenkam, T., Weaver, J. C., Cutroni, J. A., Bosma, B. L., Bawazer, L., Finch, M. M., Cidade, G. A., Morse, D. E., Stucky, G. D. and Hansma, P. K. (2004) Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone. Bone 35, 1013-1022.   DOI   ScienceOn
48 Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A., Qian, Y. X., Kaufman, S., Sarosi, I., Shalhoub, V., Senaldi, G., Guo, J., Delaney, J. and Boyle, W. J. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165-176.   DOI   ScienceOn
49 Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Mochizuki, S., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga, T., Higashio, K., Udagawa, N., Takahashi, N. and Suda, T. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. U. S. A. 95, 3597-3602.   DOI   ScienceOn
50 Kubota, K., Sakikawa, C., Katsumata, M., Nakamura, T. and Wakabayashi, K. (2002) PDGF BB purified from osteoclasts acts as osteoblastogenesis inhibitory factor (OBIF). J. Biomol. Tech. 13, 62-71.
51 Kubota, K., Sakikawa, C., Katsumata, M., Nakamura, T. and Wakabayashi, K. (2002) Platelet-derived growth factor BB secreted from osteoclasts acts as an osteoblastogenesis inhibitory factor. J. Bone. Miner. Res. 17, 257-265.   DOI   ScienceOn
52 Wu, L. N., Genge, B. R. and Wuthier, R. E. (1991) Association between proteoglycans and matrix vesicles in the extracellular matrix of growth plate cartilage. J. Biol. Chem. 266, 1187-1194.
53 Kubota, K., Wakabayashi, K. and Matsuoka, T. (2003) Proteome analysis of secreted proteins during osteoclast differentiation using two different methods: two-dimensional electrophoresis and isotope-coded affinity tags analysis with two-dimensional chromatography. Proteomics 3, 616-626.   DOI   ScienceOn
54 Baum, J. and Brodsky, B. (1999) Folding of peptide models of collagen and misfolding in disease. Curr. Opin. Struct. Biol. 9, 122-128.   DOI   ScienceOn
55 Balcerzak, M., Malinowska, A., Thouverey, C., Sekrecka, A., Dadlez, M., Buchet, R. and Pikula, S. (2008) Proteome analysis of matrix vesicles isolated from femurs of chicken embryo. Proteomics 8, 192-205.   DOI   ScienceOn
56 Kirsch, T., Harrison, G., Golub, E. E. and Nah, H. D. (2000) The roles of annexins and types II and X collagen in matrix vesicle-mediated mineralization of growth plate cartilage. J. Biol. Chem. 275, 35577-35583.   DOI   ScienceOn
57 Kassem, M., Abdallah, B. M. and Saeed, H. (2008) Osteoblastic cells: differentiation and trans-differentiation. Arch. Biochem. Biophys. 473, 183-187.   DOI   ScienceOn
58 Choi, Y. A., Lim, J., Kim, K. M., Acharya, B., Cho, J. Y., Bae, Y. C., Shin, H. I., Kim, S. Y. and Park, E. K. (2010) Secretome analysis of human BMSCs and identification of SMOC1 as an important ECM protein in osteoblast differentiation. J. Proteome. Res. 9, 2946-2956.   DOI   ScienceOn
59 Bjornaes, I. and Rofstad, E. K. (2001) Transvascular and interstitial transport of a 19 kDa linear molecule in human melanoma xenografts measured by contrast-enhanced magnetic resonance imaging. J. Magn. Reson. Imaging 14, 608-616.   DOI   ScienceOn
60 Kim, J. M., Kim, J., Kim, Y. H., Kim, K. T., Ryu, S. H., Lee, T. G. and Suh, P. G. (2013) Comparative secretome analysis of human bone marrow-derived mesenchymal stem cells during osteogenesis. J. Cell Physiol. 228, 216-224.   DOI   ScienceOn
61 Martinek, N., Shahab, J., Sodek, J. and Ringuette, M. (2007) Is SPARC an evolutionarily conserved collagen chaperone? J. Dent. Res. 86, 296-305.   DOI   ScienceOn
62 Alves, R. D., Eijken, M., Bezstarosti, K., Demmers, J. A. and van Leeuwen, J. P. (2013) Activin A suppresses osteoblast mineralization capacity by altering extracellular matrix (ECM) composition and impairing matrix vesicle (MV) production. Mol. Cell Proteomics 12, 2890-2900.   DOI   ScienceOn
63 Li, J., Zhang, F. and Chen, J. Y. (2011) An integrated proteomics analysis of bone tissues in response to mechanical stimulation. BMC. Syst. Biol. 5(Suppl 3), S7.
64 Kim, H. K., Woo, E. R., Lee, H. W., Park, H. R., Kim, H. N., Jung, Y. K., Choi, J. Y., Chae, S. W., Kim, H. R. and Chae, H. J. (2008) The correlation of Salvia miltiorrhiza extract-induced regulation of osteoclastogenesis with the amount of components tanshinone I, tanshinone IIA, cryptotanshinone, and dihydrotanshinone. Immunopharmacol. Immunotoxicol. 30, 347-364.   DOI   ScienceOn
65 Yokozawa, T., Chung, H. Y., Dong, E. and Oura, H. (1995) Confirmation that magnesium lithospermate B has a hydroxyl radical-scavenging action. Exp. Toxicol. Pathol. 47, 341-344.   DOI   ScienceOn
66 Park, B. W., Kang, E. J., Byun, J. H., Son, M. G., Kim, H. J., Hah, Y. S., Kim, T. H., Mohana Kumar, B., Ock, S. A. and Rho, G. J. (2012) In vitro and in vivo osteogenesis of human mesenchymal stem cells derived from skin, bone marrow and dental follicle tissues. Differentiation 83, 249-259.   DOI   ScienceOn
67 Thouverey, C., Malinowska, A., Balcerzak, M., Strzelecka-Kiliszek, A., Buchet, R., Dadlez, M. and Pikula, S. (2011) Proteomic characterization of biogenesis and functions of matrix vesicles released from mineralizing human osteoblast-like cells. J. Proteomics 74, 1123-1134.   DOI   ScienceOn
68 Liu, N. Q., Dekker, L. J., Stingl, C., Guzel, C., De Marchi, T., Martens, J. W., Foekens, J. A., Luider, T. M. and Umar, A. (2013) Quantitative Proteomic Analysis of Microdissected Breast Cancer Tissues: Comparison of Label-Free and SILAC-based Quantification with Shotgun, Directed, and Targeted MS Approaches. J. Proteome. Res. 12, 4627-4641.   DOI   ScienceOn
69 Mertins, P., Udeshi, N. D., Clauser, K. R., Mani, D. R., Patel, J., Ong, S. E., Jaffe, J. D. and Carr, S. A. (2012) iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics. Mol. Cell Proteomics 11, M111 014423.
70 Lo, T., Tsai, C. F., Shih, Y. R., Wang, Y. T., Lu, S. C., Sung, T. Y., Hsu, W. L., Chen, Y. J. and Lee, O. K. Phosphoproteomic analysis of human mesenchymal stromal cells during osteogenic differentiation. J. Proteome. Res. 11, 586-598.
71 Rainger, J., van Beusekom, E., Ramsay, J. K., McKie, L., Al-Gazali, L., Pallotta, R., Saponari, A., Branney, P., Fisher, M., Morrison, H., Bicknell, L., Gautier, P., Perry, P., Sokhi, K., Sexton, D., Bardakjian, T. M., Schneider, A. S., Elcioglu, N., Ozkinay, F., Koenig, R., Megarbane, A., Semerci, C. N., Khan, A., Zafar, S., Hennekam, R., Sousa, S. B., Ramos, L., Garavelli, L., Furga, A. S., Wischmeijer, A., Jackson, I. J., Gillessen-Kaesbach, G., Brunner, H. G., Wieczorek, D., van Bokhoven, H. and Fitzpatrick, D. R. (2011) Loss of the BMP antagonist, SMOC-1, causes Ophthalmo-acromelic (Waardenburg Anophthalmia) syndrome in humans and mice. PLoS Genet. 7, e1002114.   DOI
72 James, R. G., Bosch, K. A., Kulikauskas, R. M., Yang, P. T., Robin, N. C., Toroni, R. A., Biechele, T. L., Berndt, J. D., von Haller, P. D., Eng, J. K., Wolf-Yadlin, A., Chien, A. J. and Moon, R. T. (2013) Protein Kinase PKN1 represses Wnt/beta-catenin signaling in human melanoma cells. J. Biol. Chem. 288, 34658-34670.   DOI   ScienceOn
73 Anderson, D. M., Maraskovsky, E., Billingsley, W. L., Dougall, W. C., Tometsko, M. E., Roux, E. R., Teepe, M. C., DuBose, R. F., Cosman, D. and Galibert, L. (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175-179.   DOI   ScienceOn
74 Xiao, Z., Camalier, C. E., Nagashima, K., Chan, K. C., Lucas, D. A., de la Cruz, M. J., Gignac, M., Lockett, S., Issaq, H. J., Veenstra, T. D., Conrads, T. P. and Beck, G. R., Jr. (2007) Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. J. Cell Physiol. 210, 325-335.   DOI   ScienceOn