• Title/Summary/Keyword: Cell proliferation and growth

Search Result 1,578, Processing Time 0.045 seconds

Clinicopathologic Characteristics and Prognostic Factors in Patients with Operable HER-2 Overexpressing Breast Cancer

  • Liu, Ai-Na;Sun, Ping;Liu, Jian-Nan;Ma, Jin-Bo;Qu, Hua-Jun;Zhu, Hua;Yu, Cai-Yan;Zhang, Liang-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1197-1201
    • /
    • 2012
  • Objective: To study the relationship between clinical pathologic characteristics, treatment modalities and prognostic factors in HER-2 (Human Epidermal growth factor Receptor-2) overexpressed breast carcinoma. Materials and Methods: Major clinico-pathological factors including therapeutic modalities and survival status of 371 breast cancer patients with HER2 over-expression, teated at Yantai Yuhuangding Hospital from March of 2002 to December of 2010 were retrospectively studied, with special attention focused on survival-related factors. Results: The median age of the total 371 patients in this study was 48 years at time of diagnosis, among which, the leading pathological type was infiltrating ductal carcinoma (92.5%); 62.8% presented with a primary tomor larger than 2 cm in diameter at diagnosis, 51.0% had axillary lymph node (ALN) metastases; ER (Estrogen receptor)/PR (Progesterone receptor) double negative occured in 52.8% of cases, and PCNA (proliferation cell nuclear antigen) (+++) was found in 55.1%. HER-2 overexpressed patients were usually in advanced stage when the diagnosis was made (72.8% at stages IIA~IIIC). The prognosis and survival were assessed in 259 patients with complete follow-up data. 5-year DFS (disease-free survival) and OS (overall survival) rate was 68.0% and 78.0% respectively. Univariate analysis revealed that age, tumor size, ALN metastases, LVSI (lymph-vascular space involvement), PCNA status, hormonal therapy, chemotherapy cycles, and HER-2 overexpression, correlated closely with the prognosis. ALN metastases, LVSI, PCNA status and chemotherapy cycles were independent predictors of survival. Conclusions: HER-2 overexpressed breast cancer has special clinical and pathological characteristics, with advanced clinical stages and high rate of ER/PR double negative. Lymph node metastases, LVSI, PCNA and chemotherapy cycles are independent predictors of prognosis.

Erk AND RETINOIC ACID SIGNALING PARTICIPATE IN THE SEGREGATION AND PATTERNING OF FIRST ARCH DERIVED MAXILLA AND MANDIBLE (Erk와 retinoic acid의 제1인구둥 패터닝 조절)

  • Park, Eun-Ju;Tak, Hye-Jin;Park, Eun-Ha;Baik, Jeong-Mi;Zhengguo, Piao;Lee, Sang-Hwy
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.2
    • /
    • pp.103-115
    • /
    • 2009
  • In vertebrates, the face is mainly formed with neural crest derived neural crest cells by the inherent programs and the interactive environmental factors. Extracellular signaling-regulated kinase (Erk) is one of such programs to regulate the various cellular functions. And retinoic acid (RA) also plays an important role as a regulator in differentiation process at various stages of vertebrate embryogenesis. We wanted to know that the segregation as well as the patterning of maxillary and mandibular structure is greatly influenced by the maxillomandibular cleft (MMC) and the failure of this development may result in the maxillomandibular fusion (syngnathia) or other patterning related disorder. It has been well documented that the epithelium at this cleft region has significant expression of Fibroblast growth factor (Fgf) 8, and it is essential for the patterning of the first arch derived structures. By the morphological, skeletal, cell proliferation and apoptotic, and hybridization analysis, we checked the effects of Erk inhibition and/or RA activation onto MMC and could observe that Erk and RA signaling is individually and synergically involved in the facial patterning in terms of FGF signaling pathway via Barx-l. So RA and Erk signaling work together for the MMC patterning and the segregation of maxilla-mandible by controlling the Fgf-related signaling pathways. And the abnormality in MMC brought by aberrant Fgf signaling may result in the disturbances of maxillary-mandibular segregation.

A novel human KRAB-related zinc finger gene ZNF425 inhibits mitogen-activated protein kinase signaling pathway

  • Wang, Yuequn;Ye, Xiangli;Zhou, Junmei;Wan, Yongqi;Xie, Huaping;Deng, Yun;Yan, Yan;Li, Yongqing;Fan, Xiongwei;Yuan, Wuzhou;Mo, Xiaoyang;Wu, Xiushan
    • BMB Reports
    • /
    • v.44 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • Zinc finger (ZNF) proteins play a critical role in cell growth, proliferation, apoptosis, and intracellular signal transduction. In this paper, we cloned and characterized a novel human KRAB-related zinc finger gene, ZNF425, which encodes a protein of 752 amino acids. ZNF425 is strongly expressed in the three month old human embryos and then is almost undetectable in six month old embryos and in adult tissues. An EGFP-ZNF425 fusion protein can be found in both the nucleus and the cytoplasm. ZNF425 appears to act as a transcription repressor. Over-expression of ZNF425 inhibits the transcriptional activities of SRE, AP-1, and SRF. Deletion analysis indicates that the C2H2 domain is the main region responsible for the repression. Our results suggest that the ZNF425 gene is a new transcriptional inhibitor that functions in the MAPK signaling pathway.

Anti-oxidant, Anti-inflammatory and Anti-cancer Effect of Methanol Extract of Pogostemon cablin (광곽향 메탄올 추출물의 항산화, 항염증 및 암세포 증식 억제 효과)

  • Yun, Seung Geun;Jin, Soojung;Jeong, Hyun Young;Yun, Hee Jung;Do, Mi young;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.44-52
    • /
    • 2015
  • In the present study, the substance that show anti-proliferation of cancer cells as well as anti-oxidant and anti-inflammatory effect was searched. As a results, the methanol extract of Pogostemon cablin (P. cablin), is a well-known herb for traditional medicine in Korea and China for treating the digestive disorders, less of appetite, vomiting and diarrhea, inhibited the growth of various cancer cells such as A549, HepG2, MCF7 and HT29 cells. Cytotoxic effect of methanol extraction of P. cablin was excellent in A549 cells. P. cablin extract induced cell cycle arrest at G1 phase of A549 in a dose dependent manner. And it induced phosphorylation of p38 and Cdc25A and reduced expression of Cdc25A, Cdks, Cyclins and phospho-Retinoblastoma (Rb) proteins. Therefore, P. cablin extract seems to act through the p38 - Cdc25A - Cdk - Cyclin - Rb pathway in A549 cells. In addition, P. cablin extract showed anti-oxidant effect by DPPH free radical scavenging assay and anti-inflammation effect by inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) in RAW 264.7 cells in a dose-dependent manner. Taken together, these results suggest that P. cablin may be used as not only candidate materials for anti-cancer, anti-inflammatory and anti-oxidant, moreover, it would be possible utilized in various health functional food materials.

Electrochemical Characteristics of Zn and Si Ion-doped HA Films on Ti-6Al-4V by PEO Treatment

  • Lim, Sang-Gyu;Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.199-199
    • /
    • 2016
  • Commercially pure titanium (cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Electrochemical deposition method is an attractive technique for the deposition of hydroxyapatite (HAp). However, the adhesions of these coatings to the Ti surface needs to be improved for clinical used. Plasma electrolyte oxidation (PEO) enables control in the chemical com position, porous structure, and thickness of the $TiO_2$ layer on Ti surface. In addition, previous studies h ave concluded that the presence of $Ca^{+2}$ and ${PO_4}^{3-}$ ion coating on porous $TiO_2$ surface induced adhesion strength between HAp and Ti surface during electrochemical deposition. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study electrochemical characteristcs of Zn and Si coating on Ti-6Al-4V by PEO treatment. The coating process involves two steps: 1) formation of porous $TiO_2$ on Ti-6Al-4V at high potential. A pulsed DC power supply was employed. 2) Electrochemical tests were carried out using potentiodynamic and AC impedance methoeds. The morphology, the chemical composition, and the micro-structure an alysis of the sample were examined using FE-SEM, EDS, and XRD. The enhancements of the HAp forming ability arise from $Si/Zn-TiO_2$ surface, which has formed the reduction of the Si/Zn ions. The promising results successfully demonstrate the immense potential of $Si/Zn-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Immuno-stimulating Activities of Polysaccharide Fractions Isolated from Persimmon Leaves (감잎에서 분리한 다당의 면역자극 활성)

  • Shin, Young-A;Park, Hye-Ryung;Hong, Hee-Do;Shin, Kwang-Soon
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.941-950
    • /
    • 2012
  • In order to develop new physiologically active polysaccharides from persimmon leaves, two different crude polysaccharides were prepared using hot water (PLW-0) and pectinase digestion (PLE-0) and their immuno-stimulating activities were estimated. PLW-0 and PLE-0 showed similar sugar compositions with 15 different sugars, including rarely observed sugars in general polysaccharides such as 2-O-methyl-fucose, 2-O-methyl-xylose, apiose, aceric acid, 3-deoxy-D-manno-2-octulosonic acid, and 3-deoxy-D-lyxo-2-heptulosaric acid, but the uronic acid content of PLE-0 was lower than that of PLW-0 caused by pectinase treatment. Both PLW-0 and PLE-0 showed potent anti-complementary activity in a dose-dependent manner which was similar to a known immuno-stimulating polysaccharide, PSK, from Coriolus versicolor. The activity of PLE-0 at a low concentration ($100{\mu}g/m{\ell}$) was higher than that of PLW-0. In an in vitro cytotoxicity analysis, PLW-0 and PLE-0 (up to $1,000{\mu}g/m{\ell}$) did not affect the growth of peritoneal macrophages and Colon 26-M3.1 carcinoma cells. In contrast, they enhanced lymphocyte proliferation activity. Peritoneal macrophages stimulated with PLW-0 and PLE-0 produced various cytokines, such as IL-6 and IL-12. However, PLE-0 was more effective on the cytokine production. Intravenous administration of PLW-0 and PLE-0 significantly augmented natural killer (NK) cell cytotoxicity against Yac-1 tumor cells 3 days after the treatment of polysaccharide fractions. But NK cells obtained from the PLE-treated group showed higher tumoricidal activity even at a low dose of $40{\mu}g$/mouse. In experimental lung metastasis of Colon 26-M3.1 carcinoma cells, prophylactic administration of PLW-0 and PLE-0 significantly inhibited lung metastasis in a dose-dependent manner and PLE-0 was more effective on the inhibition of cancer metasasis. The results lead us to conclude that the pectinase-treated process is indispensable to preparing polysaccharides with higher immune-stimulating activity from persimmon leaves.

Effects of the immobilization of heparin and rhPDGF-BB to titanium surfaces for the enhancement of osteoblastic functions and anti-inflammation

  • Huh, Jung-Bo;Lee, Jeong-Yo;Lee, Kyung-Lae;Kim, Sung-Eun;Yun, Mi-Jung;Shim, Ji-Suk;Shim, June-Sung;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.152-160
    • /
    • 2011
  • PURPOSE. This study was to investigate the effects of recombinant human platelet-derived growth factor (rhPDGF-BB) and heparin to titanium surfaces for enhancement of osteoblastic functions and inhibition of inflammation activity. MATERIALS AND METHODS. The anodized titanium discs, not coated with any material, were used as a control group. In heparinized-Ti group, dopamine was anchored to the surface of Ti substrates, and coated with heparin. In PDGF-Ti group, rhPDGF-BB was immobilized onto heparinized Ti surface. The surface morphologies were investigated by the scanning electron microscope in each group. The release kinetics of rhPDGF-BB were analyzed, and cytotoxicity tests for each group were conducted. The biocompatibilities were characterized by measuring cell proliferation, alkaline phosphatase activity, and calcium deposition using MG-63 cells. Statistical comparisons were carried out by one-way ANOVA tests. Differences were considered statistically significant at $^*$P<.05 and $^{**}$P<.001. RESULTS. The combination of rhPDGF-BB and heparin stimulated alkaline phosphatase activity and OCN mRNA expression in osteoblastic cells ($^*$P<.05 and $^{**}$P<.001). MG-63 cells grown on PDGF-Ti had significantly higher amounts of calcium deposition than those grown on anodized Ti ($^{**}$ P<.001). Heparinized Ti was more anti-inflammatory compared to anodized Ti, when exposed to lipopolysaccharide using the transcript levels of TNF-${\alpha}$ and IL-6 of proinflammatory cytokine ($^*$P<.05 and $^{**}$P<.001). CONCLUSION. The result of this study demonstrated that the incorporation of rhPDGF-BB and heparin onto Ti surface enhanced osteoblastic functions and inhibited inflammation.

Preparation and Characterization of Small Intestine Submucosa Powder Impregnated Poly(L-lactide) Scaffolds: The Application for Tissue Engineered Bone and Cartilage

  • Khang, Gilson;Rhee, John M.;Shin, Philkyung;Kim, In Young;Lee, Bong;Lee, Sang Jin;Lee, Young Moo;Lee, Hai Bang;Lee, Ilwoo
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.158-167
    • /
    • 2002
  • In order to endow with new bioactive functionality from small intestine submucosa (SIS) powder as natural source to poly (L-lactide) (PLA) and poly (lactide-co-glycolide) (PLGA) synthetic biodegradable polymer, porous SIS/PLA and SIS/PLGA as natural/synthetic composite scaffolds were prepared by means of the solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. A uniform distribution of good interconnected pores from the surface to core region was observed the pore size of 40~500 ${\mu}{\textrm}{m}$ independent with SIS amount using the solvent casting/salt leaching method. Porosities, specific pore areas as well as pore size distribution also were almost same. After the fabrication of SIS/PLA hybrid scaffolds, the wetting properties was greatly enhanced resulting in more uniform cell seeding and distribution. Five groups as PGA non-woven mesh without glutaraldehyde (GA) treatment, PLA scaffold without or with GA treatment, and SIS/PLA (Code No.3 ; 1 : 12 of salt content, (0.4 : 1 of SIS content, and 144 ${\mu}{\textrm}{m}$ of median pore size) without or with GA treatment were implanted into the back of nude mouse to observe the effect of SIS on the induction of cells proliferation by hematoxylin and eosin, and von Kossa staining for 8 weeks. It was observed that the effect of SIS/PLA scaffolds with GA treatment on bone induction are stronger than PLA scaffolds, that is to say, in the order of PLA/SIS scaffolds with GA treatment > PLA/SIS scaffolds without GA treatment > PGA nonwoven > PLA scaffolds only with GA treatment = PLA scaffolds only without GA treatment for the osteoinduction activity. The possible explanations are (1) many kinds of secreted, circulating, and extracellular matrix-bound growth factors from SIS to significantly affect critical processes of tissue development and differentiation, (2) the exposure of SIS to GA resulted in significantly calcification, and (3) peri-implant fibrosis due to covalent bonding between collagen molecule by crosslinking reaction. In conclusion, it seems that SIS plays an important role for bone induction in SIS/PLA scaffolds for the application of tissue engineering area.

Induction of Apoptosis by Pectenotoxin-2 Isolated from Marine Sponges in U937 Human Leukemic Cells (인체 혈구암세포 U937에서 해양해면동물에서 추출된 Pectenotoxin-2에 의한 Apoptosis의 유발에 관한 연구)

  • Shin, Dong Yeok;Kang, Ho Sung;Bae, Song-Ja;Jung, Jee H.;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.63-70
    • /
    • 2006
  • Natural product compounds are the source of numerous therapeutic agents. The marine environment produces natural products from a variety of structural classes exhibiting activity against numerous disease targets including anticancer agents. Among these, pectenotoxin-2 (PTX-2), which was first identified as a cytotoxic entity in marine sponges, which depolymerizes actin filaments, was found to be highly effective and more potent to activate an intrinsic pathway of apoptosis in p53-deficient tumor cells compared to those with functional p53 both in vitro and in vivo. However, the anti-proliferative mechanism of the compound at non-cytotoxic concentrations has not yet been explored. In the current study, we sought to investigate anti-proliferation and apoptosis of PTX-2 against U937 human leukemic cells and its underlying molecular mechanism. Exposure of U937 cells to PTX-2 resulted in growth inhibition and induction of apoptosis in dose- and time-dependent manner as measured by MTT assay, fluorescent microscopy and flow cytometric analysis. The anti-proliferative effect of PTX-2 was associated with a marked increase in the expression of cyclin-dependent kinase p21 (WAF1/CIP1) mRNA which was tumor suppressor p53-independent. The increase in apoptosis was connected with a time-dependent down-regulation of anti-apoptotic Bcl-XL and inhibitor of apoptosis proteins (IAPs) family such as XIAP and cIAP-2. Though additional studies are needed, these findings suggested that PTX-2-induced inhibition of U937 cells was associated with the induction of apoptotic cell death and the results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of PTX-2.

  • PDF

Role of Trophobolast in Implantation and Placenta Development (착상 및 태반 발달과정에 따른 영양막세포의 역할)

  • Kim, Gi-Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.3
    • /
    • pp.181-189
    • /
    • 2010
  • The placenta, which is a temporary organ derived from the fetus during pregnancy, is critical to support fetus development via optimal regulation between mother and fetus. Trophoblast as a major cell population of the placenta is one of the earliest to differentiate and shows an extensive proliferation or/and differentiation up to the formation of the placenta. The role of the trophoblast show dynamic changes from early embryo implantation to placentation during pregnancy. Implantation of the blastocyst into the endometrium of the maternal uterus is mediated by invasion of the differentiated trophoblast (e.g. syncytiotrophoblast) from the trophectoderm. During pregnancy, the unique role of the trophoblast is to invasion, eroding, and metastasizing in the placenta as well as to ensure appropriate bidirectional nutrient or waste flow required for growth and maturation of the embryo. The dysfunction of the trophoblast during pregnancy can result in several gynecological diseases including preeclampsia and congenital malformation in neonatal medicine. Therefore, trophoblasts act as a conclusive factor in placental and fetal development. This brief review outlines the classification of trophoblast and its function in the placenta during pregnancy. Also, we introduce the latest research in trophoblast for implantation and the placenta development, and the application potential of trophoblast for infertility and obstetrical diseases.