• Title/Summary/Keyword: Cell proliferation and growth

Search Result 1,582, Processing Time 0.027 seconds

Fermented Jeju Soybean Extract Promotes Hair Growth in Human Hair Follicle Organ Culture and Clinical Trial (모낭기관배양과 임상에서 제주푸른콩발효추출물의 육모 효능에 미치는 영향)

  • Lee, Yonghee;Shin, Seung Hyun;Kim, Sehyun;Jeong, Gyusang;Hong, Min Jung;Park, Hyeokgon;Kim, Seung Hun;Kim, Eun Joo;Kang, Young-Gyu;Park, Byung Cheol;Park, Won Seok;Kim, Su Na;Kim, Hyoung-June
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.3
    • /
    • pp.255-263
    • /
    • 2021
  • Soybean extract is known to play an important role in preventing and treating diseases associated with aging, cancer, obesity, and cardiovascular disease. A recent has revealed that soybean extract has a potent effect on hair growth in in vitro, in vivo, and clinical studies. Recently, it has been reported that their fermented extracts exhibit numerous and high efficacy, as compared to general extracts. However, the underlying mechanisms that induce hair growth after using fermented soybean extract are not well understood. The present study aimed to determine the effects of fermented Jeju soybean (FJS) extract on hair growth, with a focus on the underlying mechanisms similar to those of minoxidil. We conducted in vitro and ex vivo investigations and clinical studies. FJS extract enhanced dermal papilla cell proliferation, VEGF levels, and potassium channel opening. Moreover, it promoted human hair follicle elongation. These effects were comprehensively demonstrated in the clinical results, in which FJS extract-containing shampoo improved hair density after 24 weeks of utilization. Collectively, the results of this study demonstrate that FJS extract promotes hair growth and inhibits hair loss through a mechanism similar to that of minoxidil in hair follicles.

THE EFFECT OF FGF-MEDIATED FGFR SIGNALING ON THE EARLY MORPHOGENESIS AND MAINTENANCE OF THE CRANIAL SUTURE (FGF-mediated FGFR signaling이 두개봉합부의 초기형태발생 및 유지기전에 미치는 영향)

  • Sue, Kyung-Hwan;Park, Mi-Hyun;Ryoo, Hyun-Mo;Nam, Soon-Hyeun;Kim, Young-Jin;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.4
    • /
    • pp.652-663
    • /
    • 1999
  • Craniosynostosis, the premature fusion of cranial sutures, presumably involves disturbance of the interactions between different tissues within the cranial sutures. Interestingly, point mutaions in the genes encoding for the fibroblast growth factor receptors(FGFRs), especially FGFR2, cause various types of human craniosynostosis syndromes. To elucidate the function of these genes in the early morphogenesis of mouse cranial sutures, we first analyzed by in situ hybridization the expression of FGFR2(BEK) and osteopontin, an early marker of osteogenic differentiation, in the sagittal suture of calvaria during embryonic(E15-E18) and postnatal stage(P1-P3). FGFR2(BEK) was intensely expressed in the osteogenic fronts, whose cells undergo differentiation into osteoprogenitor cells that ultimately lay down the bone matrix. Osteopontin was expressed throughout the parietal bones excluding the osteogenic fronts, the periphery of the parietal bones. To further examine the role of FGF-mediated FGFR signaling in cranial suture, we did in vitro experiments in E15.5 mouse calvarial explants. Interestingly, implantation of FGF2 soaked beads onto both the osteogenic fronts and mid-mesenchyme of sagittal suture after 36 hours organ culture resulted in the increase of the tissue thickness and cell number around FGF2 beads, moreover FGF4-soaked beads implanted onto the osteogenic fronts stimulated suture closure due to an accelerated bone growth, compared to FGF4 beads placed onto mid-mesenchyme of sagittal suture and BSA control beads. In addition FGF2 induced the ectopic expression of osteopontin and Msx1 genes. Taken together, these data indicate that FGF-mediated FGFR signaling has a important role in regulating the cranial bone growth and maintenance of cranial suture, and suggest that FGF-mediated FGFR signaling is involved in regulating the balance between the cell proliferation and differentiation through inducing the expression of osteopontin and Msx1 genes.

  • PDF

The effect of safflower seed fraction extract on periodontal ligament fibroblast and MC3T3-E1 cell in vitro (홍화씨 분획 추출물이 치주인대 섬유아세포와 MC3T3-E1 세포에 미치는 영향)

  • Huh, Ji-Sun;Kang, Jung-Hwa;Yoo, Yun-Jung;Kim, Chang-Sung;Cho, Kyoo-Sung;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.833-846
    • /
    • 2001
  • Recently, use of natural medicine is getting more attention, and some of them are believed to be effective in the treatment of periodontitis. Among them, the seeds of safflower(Carthamus tinctrorius L.) have been proven to be effective through its use in bone diseases such as fracture and osteoporosis. During the last few years, studies using the seeds of safflower gown in Korea have been active, and it has been reported that safflower seed extract increase the proliferation and the alkaline phosphatase(ALP) activity of human periodontal ligament fibroblast(hPDLF), osteoblast, and that they promote the mineralization process. In animal studies, when safflower seed extract were administered orally new bone formation was promoted. Recently, in an effort to find out the most effective osteogenic components, among many components of the safflower seed, various safflower seed fraction extracts were obtained by multistep extraction of the safflower components using various solvents. Among these, saf-M-W fraction extracted by methanol and water was most effective in increasing osteogenic potential of osteoblasts. In this study, the effect of safflower seed fraction extract, saf-M-W, on the growth and differentiation of hPDLF and MC3T3-E1 cell was investigated. The toxicity of saf-M-W on both cells was measured using M'IT(3-(4,5dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide) test, and ALP activity was measured using the colorimetric assay of hPDLF. In addition, in MC3T3-El cells, the expression of ALP, bone sialoprotein(BSP) mRNA was observed using Northern blot, and the mineralized nodule formation Was observed using von Kossa stain and phase-contrast microscope. 1. In concentrations below $10{\mu}g/ml$, saf-M-W didn't show any toxicity on hPDLF and MC3T3-El cell. 2. The change in saf-M-W concentration had no effect on the ALP activity of hPDLF. 3. In MC3T-E1 cells, mRNA expressions of ALP and BSP were greater in the experimental group treated with $10{\mu}g/ml$ concentration of saf-M-W compared with the control group. 4. In MC3T3-El cells, abundance of mineralized nodules were formed in the experimental group treated with $10{\mu}g/ml$ Concentration of saf-M-W, while no mineralized nodule was formed in the control group. These results suggest that safflower seed fraction extract, saf-M-W. didn't show any toxicity on hPDLF and MC3T3-E1 cell at concentrations below $10{\mu}g/ml$ and effectively enhanced the differentiation and osteogenic potential of MC3T3-El cell.

  • PDF

Effect of Ratio of Demineralized Bone Powder with Alginate Microcapsules on Articular Cartilage Regeneration (탈미네랄 골분이 비율별로 포접된 알지네이트 미세캡슐을 이용한 조직공학적 연골재생)

  • Kim, A Ram;Kim, Hye Min;Lee, Jung Keun;Lee, Ji Hye;Song, Jeong Eun;Yoon, Kun Ho;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.768-775
    • /
    • 2012
  • Alginate, obtained from the seaweeds, is a widely used biomaterial for cell transplantation, since its positive effect on viability of capsulized cells and its easier encapsulation capability of living cells. Demineralized bone powder (DBP), derived from the natural bone tissue, is widely applied for clinical trials for its low rate of reaction and antigenicity. A chondrocyte was seeded into an alginate with DBP of different contents, and a microcapsule was produced. The adhesion and proliferation of cells was observed through the MTT analysis, and the PCR was applied to estimate the content of the glycosaminoglycan (sGAG) and collagen, and confirm the specific genetic pattern of the chondrocytes. Also, the alginate microcapsule where the chondrocyte is seeded was extracted after transplantation under the skin of a nude mouse, and was immunochemically stained. The experimental result confirmed that the alginate microcapsule containing 1% of DBP not only showed the highest proliferation of cell but had a positive effect of chondrocytes by the interaction between the alginates and the growth factor in DBP. It can be expected that the microcapsule with application of the alginates and DBP might be an appropriate scaffold for tissue engineering.

THE STUDY ON EFFECTS OF THE PLATELET-DERIVED GROWTH FACTOR-AA, BB ON THE CELLULAR ACTIVITY OF THE HUMAN PERIODONTAL LIGAMENT CELLS (Platelet-derived growth factor-AA, BB가 치주인대세포의 세포활성에 미치는 영향에 대한 연구)

  • Oh, Sang-Deok;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.2
    • /
    • pp.303-320
    • /
    • 1994
  • Current acceptable methods For promotin gperiodontal regeneration are base on removal of diseased soft tissue, root treatment, guided tissue regeneration, inteoduction of new graft materials and biological mediators. Platelet-derived growth factor(PDGF) is one of polypeptide growth factor. PDGF has been reported as a biological mediator which regulates activities of wound healing process including the cell proliferation, migration and metabolism. The purposes of this study is to evaluate the effects of PDGF-AA, BB on the periodontal ligament cells to use as a regeneration promoting agent of periodontal tissue. Human periodontal ligament cells were prepared from the first premolar tooth extracted for the orthodontic treatment and were cultured in DMEM/10% FBS at the $37^{\circ}C$, 5% $CO_2$ incubator. Author measured the DNA synthesis, total protein, collagen and noncollagenous protein synthesis and alkaline phosphatase activity according to the concentration of PDGF-AA and BB(0, 0.1, 1, 10, 100ng/ml). The results were as follows : The DNA synthetic activity was increased dose dependently by PDGF-AA and BB. The maximum mitogenic effect was at the 100ng/ml of PDGF-AA and 10ng/ml of PDGF-BB. The total protein, collagen and noncollagen systhesis was increased dose dependently by PDGF-AA and BB. The % of collagen was slightly decresed according to the concentration of PDGF-AA and BB. The effect of PDGF-AA and BB were not specific for collagen synthesis since it also increased noncollagenous protein synthesis. The effect of PDGF-AA and BB on alkaline phosphatase activity did not show any significant, meanwhile the alkaline phosphatase activity of 14 days group showed significnat increase. In conclusion, PDGF-AA and BB may have important roles in stimulation of DNA synthesis in human periodontal ligament cells, which means an increase in collagen-synthesizing cells, and may be useful for clinical application in periodontal regenerative procedures.

  • PDF

Comparative Study of Toxic Effects of Anatase and Rutile Type Nanosized Titanium Dioxide Particles in vivo and in vitro

  • Numano, Takamasa;Xu, Jiegou;Futakuchi, Mitsuru;Fukamachi, Katsumi;Alexander, David B.;Furukawa, Fumio;Kanno, Jun;Hirose, Akihiko;Tsuda, Hiroyuki;Suzui, Masumi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.929-935
    • /
    • 2014
  • Two types of nanosized titanium dioxide, anatase ($anTiO_2$) and rutile ($rnTiO_2$), are widely used in industry, commercial products and biosystems. $TiO_2$ has been evaluated as a Group 2B carcinogen. Previous reports indicated that $anTiO_2$ is less toxic than $rnTiO_2$, however, under ultraviolet irradiation $anTiO_2$ is more toxic than $rnTiO_2$ in vitro because of differences in their crystal structures. In the present study, we compared the in vivo and in vitro toxic effects induced by $anTiO_2$ and $rnTiO_2$. Female SD rats were treated with $500{\mu}g/ml$ of $anTiO_2$ or $rnTiO_2$ suspensions by intra-pulmonary spraying 8 times over a two week period. In the lung, treatment with $anTiO_2$ or $rnTiO_2$ increased alveolar macrophage numbers and levels of 8-hydroxydeoxyguanosine (8-OHdG); these increases tended to be lower in the $anTiO_2$ treated group compared to the $rnTiO_2$ treated group. Expression of $MIP1{\alpha}$ mRNA and protein in lung tissues treated with $anTiO_2$ and $rnTiO_2$ was also significantly up-regulated, with $MIP1{\alpha}$ mRNA and protein expression significantly lower in the $anTiO_2$ group than in the $rnTiO_2$ group. In cell culture of primary alveolar macrophages (PAM) treated with $anTiO_2$ and $rnTiO_2$, expression of $MIP1{\alpha}$ mRNA in the PAM and protein in the culture media was significantly higher than in control cultures. Similarly to the in vivo results, $MIP1{\alpha}$ mRNA and protein expression was significantly lower in the $anTiO_2$ treated cultures compared to the $rnTiO_2$ treated cultures. Furthermore, conditioned cell culture media from PAM cultures treated with $anTiO_2$ had less effect on A549 cell proliferation compared to conditioned media from cultures treated with $rnTiO_2$. However, no significant difference was found in the toxicological effects on cell viability of ultra violet irradiated $anTiO_2$ and $rnTiO_2$. In conclusion, our results indicate that $anTiO_2$ is less potent in induction of alveolar macrophage infiltration, 8-OHdG and $MIP1{\alpha}$ expression in the lung, and growth stimulation of A549 cells in vitro than $rnTiO_2$.

Antioxidant Effects of Cysteine-containing Peptides of Different Lengths in Human HaCaT Keratinocytes Exposed to Hydrogen Peroxide (과산화수소에 노출된 인간 각질형성세포에서 길이가 다른 시스테인 함유 펩타이드의 항산화 효과)

  • Jae Won Ha;Joon Yong Choi;Yong Chool Boo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.3
    • /
    • pp.193-201
    • /
    • 2023
  • Hydrogen peroxide (H2O2) is a type of active oxygen species (ROS) that causes oxidative stress in cells and affects cell growth, proliferation, senescence, and death. The purpose of this study is to find active peptides that attenuate cytotoxicity of H2O2. A positional scanning synthetic tetrapeptide combinatorial library was screened to predict the sequence of potentially active peptides. As a result of comparing the effect of peptide pools on H2O2-induced death of human keratinocytes (HaCaT cells), various active peptide sequences were predicted. Especially, peptides containing cysteine (C) residue were predicted to be active. In follow-up experiments, the cytotoxicity and activity of cysteine-containing peptides of different lengths, such as C-NH2, CC-NH2, CCC-NH2, and CCCC-NH2 were examined. C-NH2 and CC-NH2 showed no significant cytotoxicity up to 1.0 mM, but CCC-NH2, and CCCC-NH2 showed relatively strong cytotoxicity. C-NH2 and CC-NH2 alleviated H2O2-induced cytotoxicity. CC-NH2 was more cytoprotective compared to C-NH2, C, N-acetyl cysteine (NAC), and glutathione (GSH). When intracellular ROS was measured by flow cytometry, H2O2 increased ROS production, and CC-NH2 suppressed ROS production more effectively than C-NH2, and it was as effective as C, NAC, and GSH. This study suggests that CC-NH2 of the cysteine-containing peptides of different lengths has an antioxidant property that safely and effectively alleviates H2O2-induced cytotoxicity and ROS production.

The Effect of Inhibition of Heme Oxygenase-1 on Chemosensitivity of Cisplatin in Lung Cancer Cells (폐암세포주에서 Heme Oxygenase-1의 억제가 Cisplatin의 항암제 감수성에 미치는 영향)

  • Kim, So-Young;Kim, Eun-Jung;Jang, Hye-Yeon;Hwang, Ki-Eun;Park, Jung-Hyun;Kim, Hwi-Jung;Jo, Hyang-Jeong;Yang, Sei-Hoon;Jeong, Eun-Taik;Kim, Hak-Ryul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.1
    • /
    • pp.33-42
    • /
    • 2007
  • Background: Heme oxygenase-1 (HO-1) is known to modulates the cellular functions, including cell proliferation and apoptosis. It is known that a high level of HO-1 expression is found in many tumors, and HO-1 plays an important role in rapid tumor growth on account of its antioxidant and antiapoptotic effects. Cisplatin is a widely used anti-cancer agent for the treatment of lung cancer. However, the development of resistance to cisplatin is a major obstacle to its use in clinical treatment. We previously demonstrated that inhibiting HO-1 expression through the transcriptional activation of Nrf2 induces apoptosis in A549 cells. The aim of this study was to determine of the inhibiting HO-1 enhance the chemosensitivity of A549 cells to cisplatin. Materials and Methods: The human lung cancer cell line, A549, was treated cisplatin, and the cell viability was measured by a MTT assay. The change in HO-1, Nrf2, and MAPK expression after the cisplatin treatment was examined by Western blotting. HO-1 inhibition was suppressed by ZnPP, which is a specific pharmacologic inhibitor of HO activity, and small interfering RNA (siRNA). Flow cytometry analysis and Western blot were performed in to determine the level of apoptosis. The level of hydrogen peroxide ($H_2O_2$) generation was monitored fluoimetrically using 2',7'-dichlorofluorescein diacetate. Results: The A549 cells showed more resistance to the cisplatin treatment than the other cell lines examined, whereas cisplatin increased the expression of HO-1 and Nrf2, as well as the phosphorylation of MAPK in a time-dependent fashion. Inhibitors of the MAPK pathway blocked the induction of HO-1 and Nrf2 by the cisplatin treatment in A549 cells. In addition, the cisplatin-treated A549 cells transfected with dither the HO-1 small interfering RNA (siRNA) or ZnPP, specific HO-1 inhibitor, showed in a more significantly decrease in viability than the cisplatin-only-treated group. The combination treatment of ZnPP and cisplatin caused in a marked increase in the ROS generation and a decrease in the HO-1 expression. Conclusion: Cisplatin increases the expression of HO-1, probably through the MAPK-Nrf2 pathway, and the inhibition of HO-1 enhances the chemosensitivity of A549 cells to cisplatin.

Cloning and Characterization of Phosphoinositide 3-Kinase γ cDNA from Flounder (Paralichthys olivaceus) (넙치에서 분리된 phosphoinositide 3-kinase γ 유전자의 클로닝 및 특성 연구)

  • Jeong, Tae Hyug;Youn, Joo Yeon;Ji, Keunho;Seo, Yong Bae;Kim, Young Tae
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.343-351
    • /
    • 2014
  • Phosphoinositide 3-kinase (PI3K) plays a central role in cell signaling and leads to cell proliferation, survival, motility, exocytosis, and cytoskeletal rearrangements, as well as specialized cell responses, superoxide production, and cardiac myocyte growth. PI3K is divided into three classes; type I PI3K is preferentially expressed in leukocytes and activated by ${\beta}{\gamma}$ subunits of heterotrimeric G-proteins. In this study, the cDNAs encoding the $PI3K{\gamma}$ gene were isolated from a brain cDNA library constructed using the flounder (Paralichthys olivaceus). The sequence of the isolated $PI3K{\gamma}$ was 1341 bp, encoding 447 amino acids. The nucleotide sequence of the $PI3K{\gamma}$ gene was analyzed with that of other species, including Oreochromis niloticus and Danio rerio, and it turned out to be well conserved during evolution. The $PI3K{\gamma}$ gene was subcloned into the expression vector pET-44a(+), and expressed in the E. coli BL21 (DE3) codon plus cell. The resulting protein was expressed as a fusion protein of approximately 49 kDa containing a C-terminal six-histidine extension that was derived from the expression vector. The expressed protein was purified to homogeneity by His-tag affinity chromatography and showed enzymatic activity corresponding to $PI3K{\gamma}$. The binding of wortmannin to $PI3K{\gamma}$, as detected by anti-wortmannin antisera, closely followed the inhibition of the kinase activities. The results obtained from this study will provide a wider base of knowledge on the primary structure and characterization of the $PI3K{\gamma}$ at the molecular level.

Macrophage and Anticancer Activities of Feed Additives on β-Glucan from Schizophyllum commune in Breast Cancer Cells (치마버섯균 유래의 베타글루칸에 대한 사료첨가제로서의 대식세포 기능 활성 및 유방암 세포주에서의 항암효능 효과)

  • Lee, Jin-Seok;Lee, Seung-Ho;Jang, Yong-Man;Lee, Jong-Dae;Lee, Byoung-Hee;Jung, Ji-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.7
    • /
    • pp.949-955
    • /
    • 2011
  • [ ${\beta}$ ]Glucan is a polysaccharide expressed on the cell walls of fungi. It is known that ${\beta}$-glucan is recognized by a family of C-type lectin receptors, dectin-1, which is expressed mainly on myeloid immune cells, including macrophages, neutrophils and dendritic cells. Raw 264.7 cells were treated with ${\beta}$-glucan from Schizophyllum commune. ${\beta}$-Glucan was not cytotoxic up to 400 ${\mu}g$/mL as measured by MTT assay. To measure the activity of macrophages, NO and TNF-${\alpha}$ assays were performed in Raw 264.7 cells. Treatment with ${\beta}$-glucan for 24 hr significantly increased production of NO and TNF-${\alpha}$ compared with control groups (p<0.05), indicating activation of macrophages. To measure inhibition of breast cancer cell proliferation, MTT assay was performed in MDA-MB-231 cells. Cell viability was significantly decreased in the group treated with 400 ${\mu}g$/mL of ${\beta}$-glucan for 48 hr (p<0.05) compared to the control group. However, tumor volume was decreased in the groups administered 200 ${\mu}g$ of ${\beta}$-glucan/mouse compared to the control group. These results indicate that ${\beta}$-glucan inhibits breast cancer cell growth through the induction of apoptosis.