The Effect of Inhibition of Heme Oxygenase-1 on Chemosensitivity of Cisplatin in Lung Cancer Cells

폐암세포주에서 Heme Oxygenase-1의 억제가 Cisplatin의 항암제 감수성에 미치는 영향

  • Kim, So-Young (Department of Internal Medicine, College of Medicine Wonkwang University) ;
  • Kim, Eun-Jung (Department of Internal Medicine, College of Medicine Wonkwang University) ;
  • Jang, Hye-Yeon (Department of Internal Medicine, College of Medicine Wonkwang University) ;
  • Hwang, Ki-Eun (Department of Internal Medicine, College of Medicine Wonkwang University) ;
  • Park, Jung-Hyun (Department of Internal Medicine, College of Medicine Wonkwang University) ;
  • Kim, Hwi-Jung (Department of Internal Medicine, College of Medicine Wonkwang University) ;
  • Jo, Hyang-Jeong (Department of Pathology Kunsan Medical Center of Wonkwang University Hospital) ;
  • Yang, Sei-Hoon (Department of Internal Medicine, College of Medicine Wonkwang University) ;
  • Jeong, Eun-Taik (Department of Internal Medicine, College of Medicine Wonkwang University) ;
  • Kim, Hak-Ryul (Department of Internal Medicine, College of Medicine Wonkwang University)
  • 김소영 (원광대학교 의과대학 내과학교실) ;
  • 김은정 (원광대학교 의과대학 내과학교실) ;
  • 장혜연 (원광대학교 의과대학 내과학교실) ;
  • 황기은 (원광대학교 의과대학 내과학교실) ;
  • 박정현 (원광대학교 의과대학 내과학교실) ;
  • 김휘정 (원광대학교 의과대학 내과학교실) ;
  • 조향정 (원광대학교 병원운영 군산의료원 병리과) ;
  • 양세훈 (원광대학교 의과대학 내과학교실) ;
  • 정은택 (원광대학교 의과대학 내과학교실) ;
  • 김학렬 (원광대학교 의과대학 내과학교실)
  • Received : 2006.08.23
  • Accepted : 2006.10.18
  • Published : 2007.01.30

Abstract

Background: Heme oxygenase-1 (HO-1) is known to modulates the cellular functions, including cell proliferation and apoptosis. It is known that a high level of HO-1 expression is found in many tumors, and HO-1 plays an important role in rapid tumor growth on account of its antioxidant and antiapoptotic effects. Cisplatin is a widely used anti-cancer agent for the treatment of lung cancer. However, the development of resistance to cisplatin is a major obstacle to its use in clinical treatment. We previously demonstrated that inhibiting HO-1 expression through the transcriptional activation of Nrf2 induces apoptosis in A549 cells. The aim of this study was to determine of the inhibiting HO-1 enhance the chemosensitivity of A549 cells to cisplatin. Materials and Methods: The human lung cancer cell line, A549, was treated cisplatin, and the cell viability was measured by a MTT assay. The change in HO-1, Nrf2, and MAPK expression after the cisplatin treatment was examined by Western blotting. HO-1 inhibition was suppressed by ZnPP, which is a specific pharmacologic inhibitor of HO activity, and small interfering RNA (siRNA). Flow cytometry analysis and Western blot were performed in to determine the level of apoptosis. The level of hydrogen peroxide ($H_2O_2$) generation was monitored fluoimetrically using 2',7'-dichlorofluorescein diacetate. Results: The A549 cells showed more resistance to the cisplatin treatment than the other cell lines examined, whereas cisplatin increased the expression of HO-1 and Nrf2, as well as the phosphorylation of MAPK in a time-dependent fashion. Inhibitors of the MAPK pathway blocked the induction of HO-1 and Nrf2 by the cisplatin treatment in A549 cells. In addition, the cisplatin-treated A549 cells transfected with dither the HO-1 small interfering RNA (siRNA) or ZnPP, specific HO-1 inhibitor, showed in a more significantly decrease in viability than the cisplatin-only-treated group. The combination treatment of ZnPP and cisplatin caused in a marked increase in the ROS generation and a decrease in the HO-1 expression. Conclusion: Cisplatin increases the expression of HO-1, probably through the MAPK-Nrf2 pathway, and the inhibition of HO-1 enhances the chemosensitivity of A549 cells to cisplatin.

연구배경: 다양한 고형암에서 HO-1의 높은 발현이 알려져 있고, 그것의 항산화와 항세포고사의 역할로 인해 빠른 암종의 성장에 중요한 역할이 있음이 보고되고 있다. 대표적인 활성산소종 생성 항암제인 Cisplatin은 현재까지 폐암치료에 가장 광범위하게 사용되고 있으나, 여러 내성발생이 임상치료의 주요문제로 대두되고 있다. 저자들은 A549 폐암세포주에서 HO-1의 발현이 증가되었고 HO-1 활성억제제나 siRNA 방법을 통해 생존율의 의미 있는 감소와 세포고사가 유도됨을 보고한 바 있다. 이 연구의 목적은 A549 폐암세포주에 cisplatin 처리시 HO-1의 발현의 증가유무와 기전을 규명하고 실제 HO-1의 억제가 cisplatin에 의한 항암제 감수성을 증가시키는지를 알아보는데 있다. 방 법: 비소세포폐암세포주인 A549, NCI-H23, NCIH157, NCI-H460을 이용하였다. 세포독성은 MTT 방법으로 구하였고, HO-1, Nrf2, MAPK의 발현은 Western blotting으로 확인하였다. 또한 MAPK억제제들을 전처치한 후 cisplatin에 의해 유도된 Nrf2와 HO-1의 발현에 미치는 영향을 역시 Western blotting으로 관찰하였다. A549세포에 활성억제제인 ZnPP나 HO-1 small interfering RNA (siRNA)을 주입하여 cisplatin과의 병합요법시 생존율의 배가효과 유무를 MTT 방법으로 확인하였고, 이러한 효과가 ROS 형성과 HO-1의 발현변화와 관련되는지를 알아보기 위해 $carboxy-H_2DCFDA$ 방법과 Western blotting을 통해 각각 확인하였다. 결 과: Cisplatin 처리시 다른 세포주에 비해 A549 세포가 의의 있게 내성을 보였다. $10{\mu}M$의 농도에서 시간 의존적으로 HO-1, Nrf2, MAPK의 발현이 증가하였고, MAPK 억제제들을 전 처치하였을 때 cisplatin에 의해 유도된 HO-1과 Nrf2의 발현이 억제됨을 확인하였다. HO-1의 활성억제제인 ZnPP와 HO-1 siRNA를 통해 HO-1 mRNA를 직접 억제하는 방법으로 cisplatin과 병합치료시 단독치료에 비해 의의 있는 생존율의 감소를 보였다. 이러한 효과는 활성산소종의 생성 증가와 HO-1의 발현억제에 의한 결과임을 확인하였다. 결 론: Cisplatin 처리시 HO-1의 발현은 MAPKNrf2-HO-1의 경로를 통해 증가하였고, 부분적으로 치료에 대한 내성과 관련이 있었으며, ZnPP 등의 활성억제제나 siRNA를 통한 knock-down 방법으로 HO-1 을 표적으로 억제하는 치료방법을 통해 cisplatin의 항암제 감수성을 증가시켰다.

Keywords

References

  1. Jaiswal AK. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 2004;36:1199-207 https://doi.org/10.1016/j.freeradbiomed.2004.02.074
  2. Huang HC, Nguyen T, Pickett CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 2002277:42769-74 https://doi.org/10.1074/jbc.M206911200
  3. Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL. Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 1999;274:26071-8 https://doi.org/10.1074/jbc.274.37.26071
  4. Owuor ED, Kong AN. Antioxidants and oxidants regulated signal transduction pathways. Biochem Pharmacol 2002;64:765-70 https://doi.org/10.1016/S0006-2952(02)01137-1
  5. Chen C, Yu R, Owuor ED, Kong AN. Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch Pharm Res 2000;23:605-12 https://doi.org/10.1007/BF02975249
  6. Yu R, Chen C, Mo YY, Hebbar V, Owuor ED, Tan TH, et al. Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via Nrf2-dependent mechanism. J Biol Chem 2000;275:39907-13 https://doi.org/10.1074/jbc.M004037200
  7. Motterlini R, Foresti R, Bassi R, Calabrese V, Clark JE, Green CJ. Endothelial heme oxygenase-1 induction by hypoxia: modulation by inducible nitric-oxide synthase and S-nitrosothiols. J Biol Chem 2000; 275:13613-20 https://doi.org/10.1074/jbc.275.18.13613
  8. Doi K, Akaike T, Fujii S, Tanaka S, Ikebe N, Beppu T, et al. Induction of haem oxygenase-1 nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Br J Cancer 1999; 80:1945-54 https://doi.org/10.1038/sj.bjc.6690624
  9. Elbirt KK, Whitmarsh AJ, DavisRJ, Bonkovsky HL. Mechanism of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells: role of mitogenactivated protein kinases. J Biol Chem 1998;273: 8922-31 https://doi.org/10.1074/jbc.273.15.8922
  10. Eyssen-Hernandez R, Ladoux A, Frelin C. Differential regulation of cardiac heme oxygenase-1 and vascular endothelial growth factor mRNA expressions by hemin, heavy metals, heat shock and anoxia. FEBS Lett 1996;382:229-33
  11. Keyse SM, Tyrrell RM. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci U S A 1989; 86:99-103 https://doi.org/10.1073/pnas.86.1.99
  12. Lautier D, Luscher P, Tyrrell RM. Endogenous glutathione levels modulate both constitutive and UVA radiation/hydrogen peroxide inducible expression of the human heme oxygenase gene. Carcinogenesis 1992;13:227-32 https://doi.org/10.1093/carcin/13.2.227
  13. Wagner M, Cadetg P, Ruf R, Mazzucchelli L, Ferrari P, Redaelli CA. Heme oxygenase-1 attenuates ischemia/ reperfusion-induced apoptosis and improves survival in rat renal allografts. Kidney Int 2003; 63:1564-73 https://doi.org/10.1046/j.1523-1755.2003.00897.x
  14. Choi BM, Pae HO, Chung HT. Nitric oxide priming protects nitric oxide-mediated apoptosis via heme oxygenase-1 induction. Free Radic Biol Med 2003; 34:1136-45 https://doi.org/10.1016/S0891-5849(03)00064-9
  15. Amon M, Menger MD, Vollmar B. Heme oxygenase and nitric oxide synthasemediate cooling-associated protection against TNF-alpha-induced microcirculatory dysfunction and apoptotic cell death. FASEB J 2003;17:175-85 https://doi.org/10.1096/fj.02-0368com
  16. Ke B, Shen XD, Zhai Y, Gao F, Busuttil RW, Volk HD, et al. Heme oxygenase 1 mediates the immunomodulatory and antiapoptotic effects of interleukin 13 gene therapy in vivo and in vitro. Hum Gene Ther 2002;13:1845-57 https://doi.org/10.1089/104303402760372945
  17. Goodman AI, Choudhury M, da Silva JL, Schwartzman ML, Abraham NG. Overexpression of the heme oxygenase gene in renal cell carcinoma. Proc Soc Exp Biol Med 1997;214:54-61
  18. Maines MD, Abrahamsson PA. Expression of heme oxygenase-1 (HSP32) in human prostate: normal, hyperplastic, and tumor tissue distribution. Urology 1996;47:727-33 https://doi.org/10.1016/S0090-4295(96)80006-9
  19. Sahoo SK, Sawa T, Fang J, Tanaka S, Miyamoto Y, Akaike T, et al. Pegylated zinc protoporphyrin: a water-soluble heme oxygenase inhibitor with tumortargeting capacity. Bioconjug Chem 2002;13:1031-8 https://doi.org/10.1021/bc020010k
  20. Fram RJ. Cisplatin and platinum analogues: recent advances. Curr Opin Oncol 1992;4:1073-9 https://doi.org/10.1097/00001622-199212000-00012
  21. Jung JH, Kim HR, Kim EJ, Hwang KE, KimSY, Park JH, et al. The role of heme oxygenase-1 in lung cancer cells. Tuberc Respir Dis 2006;60:304-13 https://doi.org/10.4046/trd.2006.60.3.304
  22. Wang G, Reed E, Li QQ. Molecular basis of cellular response to cisplatin chemotherapy in non-small cell lung cancer. Oncol Rep 200412:955-65
  23. So HS, Kim HJ, Lee JH, Lee JH, Park SY, Park C, et al. Flunarizine induces Nrf2-mediated transcriptional activation of heme oxygenase-1 in protection of auditory cells from cisplatin. Cell Death Differ 2006;13:1763-75 https://doi.org/10.1038/sj.cdd.4401863
  24. Kim HJ, So HS, Lee JH, Lee JH, Park C, ParkSY, et al. Heme oxygenase-1 attenuates the cisplatin-induced apoptosis of auditory cells via down-regulation of reactive oxygen species generation. Free Radic Biol Med 2006;40:1810-9 https://doi.org/10.1016/j.freeradbiomed.2006.01.018
  25. Fang J, Sawa T, Akaike T, Greish K, Maeda H. Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int J Cancer 2004;109:1-8 https://doi.org/10.1002/ijc.11644
  26. Eastman A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol Ther 1987;34:155-66 https://doi.org/10.1016/0163-7258(87)90009-X
  27. Sorenson CM, Eastman A. Mechanism of cis-diamminedichloroplatinum( II)-induced cytotoxicity: role of G2 arrest and DNA double-strand breaks. Cancer Res 1988;48:4484-8
  28. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003;22: 7265-79 https://doi.org/10.1038/sj.onc.1206933
  29. Pae HO, Oh GS, Choi BM, Chae SC, Kim YM, Chung KR, et al. Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. J Immunol 2004;172:4744-51 https://doi.org/10.4049/jimmunol.172.8.4744
  30. Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 2000;6:422-8 https://doi.org/10.1038/74680
  31. Berberat PO, Katori M, Kaczmarek E, Anselmo D, Lassman C, Ke B, et al. Heavy chain ferritin acts as an antiapoptotic gene that protects livers from ischemia reperfusion injury. FASEB J 2003;17:1724-6 https://doi.org/10.1096/fj.03-0229fje
  32. Tsuji MH, Yanagawa T, Iwasa S, Tabuchi K, Onizawa K, Bannai S, et al. Heme oxygenase-1 expression in oral squamous cell carcinoma as involved in lymph node metastasis. Cancer Lett 1999;138:53-9 https://doi.org/10.1016/S0304-3835(98)00372-3
  33. Deininger MH, Meyermann R, Trautmann K, Duffner F, Grote EH, Wickboldt J, et al. Heme oxygenase (HO)-1 expressing macrophages/microglial cells accumulate during oligodendroglioma progression. Brain Res 2000;882:1-8 https://doi.org/10.1016/S0006-8993(00)02594-4
  34. Torisu-Itakura H, Furue M, Kuwano M, Ono M. Co-expression of thymidine phosphorylase and heme oxygenase-1 in macrophages in human malignant vertical growth melanomas. Jpn J Cancer Res 2000; 91:906-10 https://doi.org/10.1111/j.1349-7006.2000.tb01033.x
  35. Fang J, Sawa T, Akaike T, Akuta T, Sahoo SK, Khaled G, et al. In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor. Cancer Res 2003; 63: 3567-74
  36. Fang J, Akaike T, Maeda H. Antiapoptotic role of heme oxygnease (HO) and the potential of HO as a target in anticancer treatment. Apoptosis 2004;9: 27-35 https://doi.org/10.1023/B:APPT.0000012119.83734.4e
  37. Kweon MH, Adhami VM, Lee JS, Mukhtar H. Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by EGCG. J Biol Chem 2006. (In press)
  38. Nowis D, Legat M, Grzela T, Niderla J, Wilczek E, Wilczynski GM, et al. Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene 2006;25:3365-74 https://doi.org/10.1038/sj.onc.1209378
  39. Tanaka S, Akaike T, Fang J, Beppu T, Ogawa M, Tamura F, et al. Antiapoptotic effect of haem oxygenase-1 induced by nitric oxide in experimental solid tumour. Br J Cancer 2003;88:902-9 https://doi.org/10.1038/sj.bjc.6600830
  40. Sasaki T, Yoshida K, Kondo H, Ohmori H, Kuniyasu H. Heme oxygenase-1 accelerates protumoral effects of nitric oxide in cancer cells. Virchows Arch 2005;446: 525-31 https://doi.org/10.1007/s00428-005-1247-x
  41. Barr RK, Bogoyevitch MA. The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases (JNK MAPKs). Int J Biochem Cell Biol 2001;33:1047-63 https://doi.org/10.1016/S1357-2725(01)00093-0
  42. Zanke BW, Boudreau K, Rubie E, Winnett E, Tibbles LA, Zon L, et al. The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Curr Biol 1996;6:606-13 https://doi.org/10.1016/S0960-9822(02)00547-X
  43. Sanchez-Perez I, Murguia JR, Perona R. Cisplatin induces a persistent activation of JNK that is relatedto cell death. Oncogene 1998;16:533-40